Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function has the range [tex]\(\{y \mid y \leq 5\}\)[/tex], we should analyze each of the given functions individually.
Each of these functions is a quadratic function in the form [tex]\(f(x) = a(x - h)^2 + k\)[/tex], where [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] are constants, and their graph is a parabola. The value of [tex]\(a\)[/tex] determines the direction the parabola opens (upwards if [tex]\(a > 0\)[/tex], and downwards if [tex]\(a < 0\)[/tex]), and the value of [tex]\(k\)[/tex] represents the vertex of the parabola.
1. [tex]\(f(x) = (x-4)^2 + 5\)[/tex]
- The coefficient [tex]\(a\)[/tex] is positive ([tex]\(a = 1 > 0\)[/tex]).
- The vertex is at [tex]\((4, 5)\)[/tex].
- The parabola opens upwards because [tex]\(a > 0\)[/tex].
- Therefore, the minimum value of [tex]\(f(x)\)[/tex] is 5, and the range is [tex]\(\{y \mid y \geq 5\}\)[/tex].
2. [tex]\(f(x) = -(x-4)^2 + 5\)[/tex]
- The coefficient [tex]\(a\)[/tex] is negative ([tex]\(a = -1 < 0\)[/tex]).
- The vertex is at [tex]\((4, 5)\)[/tex].
- The parabola opens downwards because [tex]\(a < 0\)[/tex].
- Therefore, the maximum value of [tex]\(f(x)\)[/tex] is 5, and the range is [tex]\(\{y \mid y \leq 5\}\)[/tex].
3. [tex]\(f(x) = (x-5)^2 + 4\)[/tex]
- The coefficient [tex]\(a\)[/tex] is positive ([tex]\(a = 1 > 0\)[/tex]).
- The vertex is at [tex]\((5, 4)\)[/tex].
- The parabola opens upwards because [tex]\(a > 0\)[/tex].
- Therefore, the minimum value of [tex]\(f(x)\)[/tex] is 4, and the range is [tex]\(\{y \mid y \geq 4\}\)[/tex].
4. [tex]\(f(x) = -(x-5)^2 + 4\)[/tex]
- The coefficient [tex]\(a\)[/tex] is negative ([tex]\(a = -1 < 0\)[/tex]).
- The vertex is at [tex]\((5, 4)\)[/tex].
- The parabola opens downwards because [tex]\(a < 0\)[/tex].
- Therefore, the maximum value of [tex]\(f(x)\)[/tex] is 4, and the range is [tex]\(\{y \mid y \leq 4\}\)[/tex].
After analyzing each function, we can conclude that the function [tex]\(f(x) = -(x-4)^2 + 5\)[/tex] has a range of [tex]\(\{y \mid y \leq 5\}\)[/tex].
Each of these functions is a quadratic function in the form [tex]\(f(x) = a(x - h)^2 + k\)[/tex], where [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] are constants, and their graph is a parabola. The value of [tex]\(a\)[/tex] determines the direction the parabola opens (upwards if [tex]\(a > 0\)[/tex], and downwards if [tex]\(a < 0\)[/tex]), and the value of [tex]\(k\)[/tex] represents the vertex of the parabola.
1. [tex]\(f(x) = (x-4)^2 + 5\)[/tex]
- The coefficient [tex]\(a\)[/tex] is positive ([tex]\(a = 1 > 0\)[/tex]).
- The vertex is at [tex]\((4, 5)\)[/tex].
- The parabola opens upwards because [tex]\(a > 0\)[/tex].
- Therefore, the minimum value of [tex]\(f(x)\)[/tex] is 5, and the range is [tex]\(\{y \mid y \geq 5\}\)[/tex].
2. [tex]\(f(x) = -(x-4)^2 + 5\)[/tex]
- The coefficient [tex]\(a\)[/tex] is negative ([tex]\(a = -1 < 0\)[/tex]).
- The vertex is at [tex]\((4, 5)\)[/tex].
- The parabola opens downwards because [tex]\(a < 0\)[/tex].
- Therefore, the maximum value of [tex]\(f(x)\)[/tex] is 5, and the range is [tex]\(\{y \mid y \leq 5\}\)[/tex].
3. [tex]\(f(x) = (x-5)^2 + 4\)[/tex]
- The coefficient [tex]\(a\)[/tex] is positive ([tex]\(a = 1 > 0\)[/tex]).
- The vertex is at [tex]\((5, 4)\)[/tex].
- The parabola opens upwards because [tex]\(a > 0\)[/tex].
- Therefore, the minimum value of [tex]\(f(x)\)[/tex] is 4, and the range is [tex]\(\{y \mid y \geq 4\}\)[/tex].
4. [tex]\(f(x) = -(x-5)^2 + 4\)[/tex]
- The coefficient [tex]\(a\)[/tex] is negative ([tex]\(a = -1 < 0\)[/tex]).
- The vertex is at [tex]\((5, 4)\)[/tex].
- The parabola opens downwards because [tex]\(a < 0\)[/tex].
- Therefore, the maximum value of [tex]\(f(x)\)[/tex] is 4, and the range is [tex]\(\{y \mid y \leq 4\}\)[/tex].
After analyzing each function, we can conclude that the function [tex]\(f(x) = -(x-4)^2 + 5\)[/tex] has a range of [tex]\(\{y \mid y \leq 5\}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.