Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To factor the quadratic expression [tex]\(x^2 + 4x - 12\)[/tex], follow these steps:
1. Identify the coefficients: The quadratic expression is of the form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -12\)[/tex].
2. Find two numbers that multiply to [tex]\(a \cdot c\)[/tex] and add to [tex]\(b\)[/tex]:
- First, calculate [tex]\(a \cdot c = 1 \cdot (-12) = -12\)[/tex].
- We need two numbers whose product is [tex]\(-12\)[/tex] and whose sum is [tex]\(4\)[/tex]. These numbers are [tex]\(6\)[/tex] and [tex]\(-2\)[/tex] because [tex]\(6 \times (-2) = -12\)[/tex] and [tex]\(6 + (-2) = 4\)[/tex].
3. Rewrite the middle term using the two numbers:
- Rewrite [tex]\(4x\)[/tex] as [tex]\(6x - 2x\)[/tex]:
[tex]\(x^2 + 4x - 12 = x^2 + 6x - 2x - 12\)[/tex].
4. Group the terms for factoring by grouping:
- Group the terms in pairs:
[tex]\((x^2 + 6x) + (-2x - 12)\)[/tex].
5. Factor out the common factor from each pair:
- In the first group [tex]\((x^2 + 6x)\)[/tex], the common factor is [tex]\(x\)[/tex]:
[tex]\(x(x + 6)\)[/tex].
- In the second group [tex]\((-2x - 12)\)[/tex], the common factor is [tex]\(-2\)[/tex]:
[tex]\(-2(x + 6)\)[/tex].
6. Factor out the common binomial:
- Both groups now contain the common binomial factor [tex]\((x + 6)\)[/tex]:
[tex]\(x(x + 6) - 2(x + 6)\)[/tex].
7. Combine the factors:
- Factor out [tex]\((x + 6)\)[/tex] from both terms:
[tex]\((x - 2)(x + 6)\)[/tex].
Thus, the factorization of the quadratic expression [tex]\(x^2 + 4x - 12\)[/tex] is:
[tex]\[ (x - 2)(x + 6) \][/tex]
1. Identify the coefficients: The quadratic expression is of the form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -12\)[/tex].
2. Find two numbers that multiply to [tex]\(a \cdot c\)[/tex] and add to [tex]\(b\)[/tex]:
- First, calculate [tex]\(a \cdot c = 1 \cdot (-12) = -12\)[/tex].
- We need two numbers whose product is [tex]\(-12\)[/tex] and whose sum is [tex]\(4\)[/tex]. These numbers are [tex]\(6\)[/tex] and [tex]\(-2\)[/tex] because [tex]\(6 \times (-2) = -12\)[/tex] and [tex]\(6 + (-2) = 4\)[/tex].
3. Rewrite the middle term using the two numbers:
- Rewrite [tex]\(4x\)[/tex] as [tex]\(6x - 2x\)[/tex]:
[tex]\(x^2 + 4x - 12 = x^2 + 6x - 2x - 12\)[/tex].
4. Group the terms for factoring by grouping:
- Group the terms in pairs:
[tex]\((x^2 + 6x) + (-2x - 12)\)[/tex].
5. Factor out the common factor from each pair:
- In the first group [tex]\((x^2 + 6x)\)[/tex], the common factor is [tex]\(x\)[/tex]:
[tex]\(x(x + 6)\)[/tex].
- In the second group [tex]\((-2x - 12)\)[/tex], the common factor is [tex]\(-2\)[/tex]:
[tex]\(-2(x + 6)\)[/tex].
6. Factor out the common binomial:
- Both groups now contain the common binomial factor [tex]\((x + 6)\)[/tex]:
[tex]\(x(x + 6) - 2(x + 6)\)[/tex].
7. Combine the factors:
- Factor out [tex]\((x + 6)\)[/tex] from both terms:
[tex]\((x - 2)(x + 6)\)[/tex].
Thus, the factorization of the quadratic expression [tex]\(x^2 + 4x - 12\)[/tex] is:
[tex]\[ (x - 2)(x + 6) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.