Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to understand the property of polynomials with rational coefficients and how their roots behave, especially when they include irrational numbers like [tex]\( \sqrt{11} \)[/tex].
Step 1: Identify the given roots - We know that the given roots of the polynomial are:
- [tex]\( 0 \)[/tex]
- [tex]\( 4 \)[/tex]
- [tex]\( 3 + \sqrt{11} \)[/tex]
Step 2: Recall the principle - For polynomials with rational coefficients, if a non-rational root [tex]\( a + b\sqrt{c} \)[/tex] exists, its conjugate [tex]\( a - b\sqrt{c} \)[/tex] must also be a root to ensure the polynomial coefficients remain rational. This is because any irrational parts need to cancel out when forming the polynomial equation.
Step 3: Identify the conjugate root - The conjugate of the root [tex]\( 3 + \sqrt{11} \)[/tex] is [tex]\( 3 - \sqrt{11} \)[/tex].
Step 4: Conclusion - Therefore, the root [tex]\( 3 - \sqrt{11} \)[/tex] must also be a root of the polynomial function [tex]\( f(x) \)[/tex].
So, the correct answer is:
[tex]\[ 3 - \sqrt{11} \][/tex]
This matches our choice:
[tex]\[ \boxed{3 - \sqrt{11}} \][/tex]
Step 1: Identify the given roots - We know that the given roots of the polynomial are:
- [tex]\( 0 \)[/tex]
- [tex]\( 4 \)[/tex]
- [tex]\( 3 + \sqrt{11} \)[/tex]
Step 2: Recall the principle - For polynomials with rational coefficients, if a non-rational root [tex]\( a + b\sqrt{c} \)[/tex] exists, its conjugate [tex]\( a - b\sqrt{c} \)[/tex] must also be a root to ensure the polynomial coefficients remain rational. This is because any irrational parts need to cancel out when forming the polynomial equation.
Step 3: Identify the conjugate root - The conjugate of the root [tex]\( 3 + \sqrt{11} \)[/tex] is [tex]\( 3 - \sqrt{11} \)[/tex].
Step 4: Conclusion - Therefore, the root [tex]\( 3 - \sqrt{11} \)[/tex] must also be a root of the polynomial function [tex]\( f(x) \)[/tex].
So, the correct answer is:
[tex]\[ 3 - \sqrt{11} \][/tex]
This matches our choice:
[tex]\[ \boxed{3 - \sqrt{11}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.