Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the velocity of a rotating platter given its period and radius, follow these steps:
1. Understand the problem's parameters:
- The period [tex]\(T\)[/tex] is 2.93 seconds. This is the time it takes for the platter to make one complete rotation.
- The radius [tex]\(r\)[/tex] of the platter is 12.8 centimeters.
2. Calculate the circumference of the platter:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\(\pi\)[/tex] (pi) is approximately equal to 3.14159.
3. Substitute the known radius into the circumference formula:
[tex]\[ C = 2 \pi \times 12.8 \, \text{cm} \][/tex]
Through the calculation, we find:
[tex]\[ C \approx 80.4247719318987 \, \text{cm} \][/tex]
4. Determine the velocity:
The velocity [tex]\(v\)[/tex] of the rotating platter can be found by dividing the circumference by the period. This is because velocity is the distance traveled per unit of time.
[tex]\[ v = \frac{C}{T} \][/tex]
where [tex]\(C\)[/tex] is the circumference and [tex]\(T\)[/tex] is the period.
5. Substitute the known values for circumference and period into the velocity formula:
[tex]\[ v = \frac{80.4247719318987 \, \text{cm}}{2.93 \, \text{s}} \][/tex]
By doing the division, we find:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
Therefore, the velocity of the rotating platter is approximately:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
1. Understand the problem's parameters:
- The period [tex]\(T\)[/tex] is 2.93 seconds. This is the time it takes for the platter to make one complete rotation.
- The radius [tex]\(r\)[/tex] of the platter is 12.8 centimeters.
2. Calculate the circumference of the platter:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\(\pi\)[/tex] (pi) is approximately equal to 3.14159.
3. Substitute the known radius into the circumference formula:
[tex]\[ C = 2 \pi \times 12.8 \, \text{cm} \][/tex]
Through the calculation, we find:
[tex]\[ C \approx 80.4247719318987 \, \text{cm} \][/tex]
4. Determine the velocity:
The velocity [tex]\(v\)[/tex] of the rotating platter can be found by dividing the circumference by the period. This is because velocity is the distance traveled per unit of time.
[tex]\[ v = \frac{C}{T} \][/tex]
where [tex]\(C\)[/tex] is the circumference and [tex]\(T\)[/tex] is the period.
5. Substitute the known values for circumference and period into the velocity formula:
[tex]\[ v = \frac{80.4247719318987 \, \text{cm}}{2.93 \, \text{s}} \][/tex]
By doing the division, we find:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
Therefore, the velocity of the rotating platter is approximately:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.