At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the velocity of a rotating platter given its period and radius, follow these steps:
1. Understand the problem's parameters:
- The period [tex]\(T\)[/tex] is 2.93 seconds. This is the time it takes for the platter to make one complete rotation.
- The radius [tex]\(r\)[/tex] of the platter is 12.8 centimeters.
2. Calculate the circumference of the platter:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\(\pi\)[/tex] (pi) is approximately equal to 3.14159.
3. Substitute the known radius into the circumference formula:
[tex]\[ C = 2 \pi \times 12.8 \, \text{cm} \][/tex]
Through the calculation, we find:
[tex]\[ C \approx 80.4247719318987 \, \text{cm} \][/tex]
4. Determine the velocity:
The velocity [tex]\(v\)[/tex] of the rotating platter can be found by dividing the circumference by the period. This is because velocity is the distance traveled per unit of time.
[tex]\[ v = \frac{C}{T} \][/tex]
where [tex]\(C\)[/tex] is the circumference and [tex]\(T\)[/tex] is the period.
5. Substitute the known values for circumference and period into the velocity formula:
[tex]\[ v = \frac{80.4247719318987 \, \text{cm}}{2.93 \, \text{s}} \][/tex]
By doing the division, we find:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
Therefore, the velocity of the rotating platter is approximately:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
1. Understand the problem's parameters:
- The period [tex]\(T\)[/tex] is 2.93 seconds. This is the time it takes for the platter to make one complete rotation.
- The radius [tex]\(r\)[/tex] of the platter is 12.8 centimeters.
2. Calculate the circumference of the platter:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\(\pi\)[/tex] (pi) is approximately equal to 3.14159.
3. Substitute the known radius into the circumference formula:
[tex]\[ C = 2 \pi \times 12.8 \, \text{cm} \][/tex]
Through the calculation, we find:
[tex]\[ C \approx 80.4247719318987 \, \text{cm} \][/tex]
4. Determine the velocity:
The velocity [tex]\(v\)[/tex] of the rotating platter can be found by dividing the circumference by the period. This is because velocity is the distance traveled per unit of time.
[tex]\[ v = \frac{C}{T} \][/tex]
where [tex]\(C\)[/tex] is the circumference and [tex]\(T\)[/tex] is the period.
5. Substitute the known values for circumference and period into the velocity formula:
[tex]\[ v = \frac{80.4247719318987 \, \text{cm}}{2.93 \, \text{s}} \][/tex]
By doing the division, we find:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
Therefore, the velocity of the rotating platter is approximately:
[tex]\[ v \approx 27.44872762180843 \, \text{cm/s} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.