Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which point maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex], we need to understand the effect of such a reflection.
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = -x \)[/tex], the new coordinates of the point become [tex]\((-y, -x)\)[/tex]. For a point to map onto itself during this reflection, the original coordinates must equal the new coordinates after the transformation. That is, the point [tex]\((x, y)\)[/tex] must satisfy:
[tex]\[ (x, y) = (-y, -x) \][/tex]
This condition implies:
1. [tex]\( x = -y \)[/tex]
2. [tex]\( y = -x \)[/tex]
Both conditions are inherently the same equation. Let's evaluate each given point to see if it satisfies [tex]\( x = -y \)[/tex].
1. [tex]\( (-4, -4) \)[/tex]:
[tex]\[ x = -4 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies -4 = -(-4) \implies -4 = 4 \quad (\text{False}) \][/tex]
2. [tex]\( (-4, 0) \)[/tex]:
[tex]\[ x = -4 \quad \text{and} \quad y = 0 \][/tex]
[tex]\[ x = -y \implies -4 = -(0) \implies -4 = 0 \quad (\text{False}) \][/tex]
3. [tex]\( (0, -4) \)[/tex]:
[tex]\[ x = 0 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies 0 = -(-4) \implies 0 = 4 \quad (\text{False}) \][/tex]
4. [tex]\( (4, -4) \)[/tex]:
[tex]\[ x = 4 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies 4 = -(-4) \implies 4 = 4 \quad (\text{True}) \][/tex]
Thus, the point [tex]\( (4, -4) \)[/tex] satisfies [tex]\( x = -y \)[/tex] and maps onto itself after being reflected across the line [tex]\( y = -x \)[/tex].
Therefore, the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\[ (4, -4) \][/tex]
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = -x \)[/tex], the new coordinates of the point become [tex]\((-y, -x)\)[/tex]. For a point to map onto itself during this reflection, the original coordinates must equal the new coordinates after the transformation. That is, the point [tex]\((x, y)\)[/tex] must satisfy:
[tex]\[ (x, y) = (-y, -x) \][/tex]
This condition implies:
1. [tex]\( x = -y \)[/tex]
2. [tex]\( y = -x \)[/tex]
Both conditions are inherently the same equation. Let's evaluate each given point to see if it satisfies [tex]\( x = -y \)[/tex].
1. [tex]\( (-4, -4) \)[/tex]:
[tex]\[ x = -4 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies -4 = -(-4) \implies -4 = 4 \quad (\text{False}) \][/tex]
2. [tex]\( (-4, 0) \)[/tex]:
[tex]\[ x = -4 \quad \text{and} \quad y = 0 \][/tex]
[tex]\[ x = -y \implies -4 = -(0) \implies -4 = 0 \quad (\text{False}) \][/tex]
3. [tex]\( (0, -4) \)[/tex]:
[tex]\[ x = 0 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies 0 = -(-4) \implies 0 = 4 \quad (\text{False}) \][/tex]
4. [tex]\( (4, -4) \)[/tex]:
[tex]\[ x = 4 \quad \text{and} \quad y = -4 \][/tex]
[tex]\[ x = -y \implies 4 = -(-4) \implies 4 = 4 \quad (\text{True}) \][/tex]
Thus, the point [tex]\( (4, -4) \)[/tex] satisfies [tex]\( x = -y \)[/tex] and maps onto itself after being reflected across the line [tex]\( y = -x \)[/tex].
Therefore, the point that maps onto itself after a reflection across the line [tex]\( y = -x \)[/tex] is:
[tex]\[ (4, -4) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.