Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the volume of a sphere given that it has the same radius and height (which is equal to the diameter) as the cylinder, we can follow these steps:
Step 1: Understand the relationship between the cylinder and the sphere.
- The cylinder has a volume [tex]\( V_{\text{cylinder}} = 18 \, m^3 \)[/tex].
- The volume of a cylinder is given by the formula [tex]\( V = \pi r^2 h \)[/tex].
- The height of the cylinder is double the radius (since the height of the cylinder equals the diameter of the sphere), so we can write [tex]\( h = 2r \)[/tex].
Step 2: Express the volume of the cylinder in terms of the radius.
- Using the cylinder's volume formula and the relationship [tex]\( h = 2r \)[/tex], we get:
[tex]\[ V_{\text{cylinder}} = \pi r^2 \cdot 2r = 2\pi r^3 \][/tex]
- We know [tex]\( V_{\text{cylinder}} = 18 \, m^3 \)[/tex], so:
[tex]\[ 18 = 2\pi r^3 \][/tex]
Step 3: Solve for the radius [tex]\( r \)[/tex].
- Rearrange the equation to isolate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{18}{2\pi} \][/tex]
[tex]\[ r^3 = \frac{9}{\pi} \][/tex]
Step 4: Calculate the radius cubed.
- The specific value is:
[tex]\[ r^3 \approx 2.8648 \][/tex]
Step 5: Find the volume of the sphere.
- The volume of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex].
- Substitute [tex]\( r^3 \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \cdot \frac{9}{\pi} \][/tex]
- Simplify the expression:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot 9 \][/tex]
[tex]\[ V_{\text{sphere}} = 12 \, m^3 \][/tex]
Therefore, the volume of the sphere is [tex]\( 12 \, m^3 \)[/tex].
Step 1: Understand the relationship between the cylinder and the sphere.
- The cylinder has a volume [tex]\( V_{\text{cylinder}} = 18 \, m^3 \)[/tex].
- The volume of a cylinder is given by the formula [tex]\( V = \pi r^2 h \)[/tex].
- The height of the cylinder is double the radius (since the height of the cylinder equals the diameter of the sphere), so we can write [tex]\( h = 2r \)[/tex].
Step 2: Express the volume of the cylinder in terms of the radius.
- Using the cylinder's volume formula and the relationship [tex]\( h = 2r \)[/tex], we get:
[tex]\[ V_{\text{cylinder}} = \pi r^2 \cdot 2r = 2\pi r^3 \][/tex]
- We know [tex]\( V_{\text{cylinder}} = 18 \, m^3 \)[/tex], so:
[tex]\[ 18 = 2\pi r^3 \][/tex]
Step 3: Solve for the radius [tex]\( r \)[/tex].
- Rearrange the equation to isolate [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{18}{2\pi} \][/tex]
[tex]\[ r^3 = \frac{9}{\pi} \][/tex]
Step 4: Calculate the radius cubed.
- The specific value is:
[tex]\[ r^3 \approx 2.8648 \][/tex]
Step 5: Find the volume of the sphere.
- The volume of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex].
- Substitute [tex]\( r^3 \)[/tex]:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \cdot \frac{9}{\pi} \][/tex]
- Simplify the expression:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot 9 \][/tex]
[tex]\[ V_{\text{sphere}} = 12 \, m^3 \][/tex]
Therefore, the volume of the sphere is [tex]\( 12 \, m^3 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.