Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex], we need to follow a series of steps. Let's break it down step by step:
1. Determine the slope of the given lines:
The given lines have the equations [tex]\(y = -\frac{1}{3}x - \frac{1}{3}\)[/tex] and [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex].
2. Identify the slope of the perpendicular line:
A line perpendicular to another line has a slope that is the negative reciprocal of the original line's slope. The slope of the given lines is [tex]\(-\frac{1}{3}\)[/tex]. Therefore, the slope of the perpendicular line will be the negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \text{slope of the perpendicular line} = -\left(\frac{1}{-\frac{1}{3}}\right) = 3. \][/tex]
3. Use the point-slope form to find the equation of the line:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\(m\)[/tex] is [tex]\(3\)[/tex] and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((2, -1)\)[/tex]. Plugging these values into the point-slope form, we get:
[tex]\[ y - (-1) = 3(x - 2). \][/tex]
4. Simplify:
Simplify the equation to convert it to slope-intercept form, [tex]\(y = mx + b\)[/tex]:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
[tex]\[ y + 1 = 3x - 6. \][/tex]
Subtract 1 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 6 - 1 \][/tex]
[tex]\[ y = 3x - 7. \][/tex]
Therefore, the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex] is [tex]\(\boxed{y = 3x - 7}\)[/tex].
1. Determine the slope of the given lines:
The given lines have the equations [tex]\(y = -\frac{1}{3}x - \frac{1}{3}\)[/tex] and [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex].
2. Identify the slope of the perpendicular line:
A line perpendicular to another line has a slope that is the negative reciprocal of the original line's slope. The slope of the given lines is [tex]\(-\frac{1}{3}\)[/tex]. Therefore, the slope of the perpendicular line will be the negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \text{slope of the perpendicular line} = -\left(\frac{1}{-\frac{1}{3}}\right) = 3. \][/tex]
3. Use the point-slope form to find the equation of the line:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\(m\)[/tex] is [tex]\(3\)[/tex] and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((2, -1)\)[/tex]. Plugging these values into the point-slope form, we get:
[tex]\[ y - (-1) = 3(x - 2). \][/tex]
4. Simplify:
Simplify the equation to convert it to slope-intercept form, [tex]\(y = mx + b\)[/tex]:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
[tex]\[ y + 1 = 3x - 6. \][/tex]
Subtract 1 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 6 - 1 \][/tex]
[tex]\[ y = 3x - 7. \][/tex]
Therefore, the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex] is [tex]\(\boxed{y = 3x - 7}\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.