Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex], we need to follow a series of steps. Let's break it down step by step:
1. Determine the slope of the given lines:
The given lines have the equations [tex]\(y = -\frac{1}{3}x - \frac{1}{3}\)[/tex] and [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex].
2. Identify the slope of the perpendicular line:
A line perpendicular to another line has a slope that is the negative reciprocal of the original line's slope. The slope of the given lines is [tex]\(-\frac{1}{3}\)[/tex]. Therefore, the slope of the perpendicular line will be the negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \text{slope of the perpendicular line} = -\left(\frac{1}{-\frac{1}{3}}\right) = 3. \][/tex]
3. Use the point-slope form to find the equation of the line:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\(m\)[/tex] is [tex]\(3\)[/tex] and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((2, -1)\)[/tex]. Plugging these values into the point-slope form, we get:
[tex]\[ y - (-1) = 3(x - 2). \][/tex]
4. Simplify:
Simplify the equation to convert it to slope-intercept form, [tex]\(y = mx + b\)[/tex]:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
[tex]\[ y + 1 = 3x - 6. \][/tex]
Subtract 1 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 6 - 1 \][/tex]
[tex]\[ y = 3x - 7. \][/tex]
Therefore, the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex] is [tex]\(\boxed{y = 3x - 7}\)[/tex].
1. Determine the slope of the given lines:
The given lines have the equations [tex]\(y = -\frac{1}{3}x - \frac{1}{3}\)[/tex] and [tex]\(y = -\frac{1}{3}x - \frac{5}{3}\)[/tex].
2. Identify the slope of the perpendicular line:
A line perpendicular to another line has a slope that is the negative reciprocal of the original line's slope. The slope of the given lines is [tex]\(-\frac{1}{3}\)[/tex]. Therefore, the slope of the perpendicular line will be the negative reciprocal of [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \text{slope of the perpendicular line} = -\left(\frac{1}{-\frac{1}{3}}\right) = 3. \][/tex]
3. Use the point-slope form to find the equation of the line:
The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\(m\)[/tex] is [tex]\(3\)[/tex] and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((2, -1)\)[/tex]. Plugging these values into the point-slope form, we get:
[tex]\[ y - (-1) = 3(x - 2). \][/tex]
4. Simplify:
Simplify the equation to convert it to slope-intercept form, [tex]\(y = mx + b\)[/tex]:
[tex]\[ y + 1 = 3(x - 2) \][/tex]
[tex]\[ y + 1 = 3x - 6. \][/tex]
Subtract 1 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3x - 6 - 1 \][/tex]
[tex]\[ y = 3x - 7. \][/tex]
Therefore, the equation of the line that is perpendicular to the given lines and passes through the point [tex]\((2, -1)\)[/tex] is [tex]\(\boxed{y = 3x - 7}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.