At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the gravitational force between two masses, you can use Newton's law of universal gravitation, which is formulated as follows:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( G \)[/tex] (Gravitational constant) = [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] (Mass 1) = [tex]\( 4.32 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] (Mass 2) = [tex]\( 163 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] (Distance between the masses) = [tex]\( 83.0 \, \text{m} \)[/tex]
Step-by-step solution:
1. Identify the masses and the separation distance:
[tex]\[ m_1 = 4.32 \, \text{kg} \][/tex]
[tex]\[ m_2 = 163 \, \text{kg} \][/tex]
[tex]\[ r = 83.0 \, \text{m} \][/tex]
2. Substitute the values into the formula for the gravitational force:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.32 \times 163}{83.0^2} \][/tex]
3. Calculate the gravitational force:
- First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 4.32 \times 163 = 704.16 \, \text{kg}^2 \][/tex]
- Next, calculate the square of the distance:
[tex]\[ r^2 = 83.0^2 = 6889.0 \, \text{m}^2 \][/tex]
- Now, substitute these intermediate results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \cdot \frac{704.16 \, \text{kg}^2}{6889.0 \, \text{m}^2} \][/tex]
- Simplify the division inside the parentheses:
[tex]\[ \frac{704.16}{6889.0} \approx 0.1022 \][/tex]
- Finally, multiply by the gravitational constant:
[tex]\[ 6.67 \times 10^{-11} \cdot 0.1022 \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is approximately:
[tex]\[ \vec{F} \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( G \)[/tex] (Gravitational constant) = [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] (Mass 1) = [tex]\( 4.32 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] (Mass 2) = [tex]\( 163 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] (Distance between the masses) = [tex]\( 83.0 \, \text{m} \)[/tex]
Step-by-step solution:
1. Identify the masses and the separation distance:
[tex]\[ m_1 = 4.32 \, \text{kg} \][/tex]
[tex]\[ m_2 = 163 \, \text{kg} \][/tex]
[tex]\[ r = 83.0 \, \text{m} \][/tex]
2. Substitute the values into the formula for the gravitational force:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.32 \times 163}{83.0^2} \][/tex]
3. Calculate the gravitational force:
- First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 4.32 \times 163 = 704.16 \, \text{kg}^2 \][/tex]
- Next, calculate the square of the distance:
[tex]\[ r^2 = 83.0^2 = 6889.0 \, \text{m}^2 \][/tex]
- Now, substitute these intermediate results back into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 \cdot \frac{704.16 \, \text{kg}^2}{6889.0 \, \text{m}^2} \][/tex]
- Simplify the division inside the parentheses:
[tex]\[ \frac{704.16}{6889.0} \approx 0.1022 \][/tex]
- Finally, multiply by the gravitational constant:
[tex]\[ 6.67 \times 10^{-11} \cdot 0.1022 \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
Thus, the gravitational force between the two masses is approximately:
[tex]\[ \vec{F} \approx 6.82 \times 10^{-12} \, \text{N} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.