Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine when the population of bacteria will exceed 1114, we use the given growth equation [tex]\( P(t) = 1000 e^{0.03 t} \)[/tex].
Here's the detailed step-by-step solution:
1. Set up the inequality:
We need to find the time [tex]\( t \)[/tex] when the population [tex]\( P(t) \)[/tex] is greater than 1114. This can be expressed as:
[tex]\[ 1000 e^{0.03 t} > 1114 \][/tex]
2. Isolate the exponential term:
Divide both sides of the inequality by 1000 to isolate the exponential term:
[tex]\[ e^{0.03 t} > \frac{1114}{1000} \][/tex]
3. Simplify the fraction:
Simplify the fraction on the right side:
[tex]\[ e^{0.03 t} > 1.114 \][/tex]
4. Apply the natural logarithm:
To solve for [tex]\( t \)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^{0.03 t}) > \ln(1.114) \][/tex]
5. Simplify using logarithm properties:
The natural logarithm and the exponential function are inverse functions, so:
[tex]\[ 0.03 t > \ln(1.114) \][/tex]
6. Divide by the coefficient of [tex]\( t \)[/tex]:
Finally, divide both sides by 0.03 to solve for [tex]\( t \)[/tex]:
[tex]\[ t > \frac{\ln(1.114)}{0.03} \][/tex]
Now, calculating the value on the right side:
[tex]\[ t > \frac{0.1072}{0.03} \approx 3.5986 \][/tex]
Therefore, the population will exceed 1114 when [tex]\( t \approx 3.5986 \)[/tex].
Thus,
[tex]\[ t \approx 3.5986 \][/tex]
The population will exceed 1114 at approximately [tex]\( t = 3.5986 \)[/tex] time units.
Here's the detailed step-by-step solution:
1. Set up the inequality:
We need to find the time [tex]\( t \)[/tex] when the population [tex]\( P(t) \)[/tex] is greater than 1114. This can be expressed as:
[tex]\[ 1000 e^{0.03 t} > 1114 \][/tex]
2. Isolate the exponential term:
Divide both sides of the inequality by 1000 to isolate the exponential term:
[tex]\[ e^{0.03 t} > \frac{1114}{1000} \][/tex]
3. Simplify the fraction:
Simplify the fraction on the right side:
[tex]\[ e^{0.03 t} > 1.114 \][/tex]
4. Apply the natural logarithm:
To solve for [tex]\( t \)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln(e^{0.03 t}) > \ln(1.114) \][/tex]
5. Simplify using logarithm properties:
The natural logarithm and the exponential function are inverse functions, so:
[tex]\[ 0.03 t > \ln(1.114) \][/tex]
6. Divide by the coefficient of [tex]\( t \)[/tex]:
Finally, divide both sides by 0.03 to solve for [tex]\( t \)[/tex]:
[tex]\[ t > \frac{\ln(1.114)}{0.03} \][/tex]
Now, calculating the value on the right side:
[tex]\[ t > \frac{0.1072}{0.03} \approx 3.5986 \][/tex]
Therefore, the population will exceed 1114 when [tex]\( t \approx 3.5986 \)[/tex].
Thus,
[tex]\[ t \approx 3.5986 \][/tex]
The population will exceed 1114 at approximately [tex]\( t = 3.5986 \)[/tex] time units.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.