Answered

Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Two masses are 1.15 m apart. Mass 1 is 75.0 kg and mass 2 is 68.4 kg. What is the gravitational force between the two masses?

[tex]\[
\begin{array}{c}
\vec{F}=G \frac{m_1 m_2}{r^2} \\
G=6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \\
m_1 = 75.0 \, \text{kg} \\
m_2 = 68.4 \, \text{kg} \\
r = 1.15 \, \text{m}
\end{array}
\][/tex]

[tex]\[
\vec{F}=[?] \times 10^{[?]} \, \text{N}
\][/tex]

Sagot :

Certainly! Let's solve the problem step by step using the provided formula to calculate the gravitational force between two masses.

### Information Provided:
- Mass 1 ([tex]\( m_1 \)[/tex]) = 75.0 kg
- Mass 2 ([tex]\( m_2 \)[/tex]) = 68.4 kg
- Distance between the masses ([tex]\( r \)[/tex]) = 1.15 m
- Gravitational constant ([tex]\( G \)[/tex]) = [tex]\( 6.67 \times 10^{-11} \)[/tex] [tex]\( \text{N} \cdot \text{m}^2/\text{kg}^2 \)[/tex]

### Formula:
The gravitational force ([tex]\( F \)[/tex]) is given by:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]

### Steps to Calculate:

1. Substitute the values into the formula:
[tex]\[ F = 6.67 \times 10^{-11} \times \frac{75.0 \times 68.4}{(1.15)^2} \][/tex]

2. Calculate the value of [tex]\( m_1 \times m_2 \)[/tex]:
[tex]\[ m_1 \times m_2 = 75.0 \times 68.4 = 5130 \][/tex]

3. Calculate the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (1.15)^2 = 1.3225 \][/tex]

4. Apply these values in the formula:
[tex]\[ F = 6.67 \times 10^{-11} \times \frac{5130}{1.3225} \][/tex]
Calculate the fractional division:
[tex]\[ \frac{5130}{1.3225} = 3877.56 \][/tex]

5. Then, multiply by [tex]\( 6.67 \times 10^{-11} \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \times 3877.56 \approx 2.587304347826087 \times 10^{-7} \][/tex]

6. Express the force in scientific notation:
[tex]\[ F \approx 2.59 \times 10^{-7} \, \text{N} \][/tex]

### Final Answer:
[tex]\[ \vec{F} \approx 2.59 \times 10^{-7} \, \text{N} \][/tex]

So, the gravitational force between the two masses is approximately [tex]\( 2.59 \times 10^{-7} \)[/tex] Newtons.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.