Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's work through each part of the question step-by-step.
### a. Complete the Table
We are given the parking rate of $5 per hour. We need to calculate the cost (G) for the given times in hours (t).
[tex]\[ \begin{array}{|c|c|} \hline t \text{ (hours)} & G \text{ (dollars)} \\ \hline 0 & 0 \\ \hline \frac{1}{2} & 2.5 \\ \hline 1 & 5 \\ \hline 1 \frac{3}{4} & 8.75 \\ \hline 2 & 10 \\ \hline 5 & 25 \\ \hline \end{array} \][/tex]
These values are calculated as follows:
- For [tex]\( t = 0 \)[/tex], [tex]\( G = 5 \times 0 = 0 \)[/tex].
- For [tex]\( t = \frac{1}{2} \)[/tex], [tex]\( G = 5 \times 0.5 = 2.5 \)[/tex].
- For [tex]\( t = 1 \)[/tex], [tex]\( G = 5 \times 1 = 5 \)[/tex].
- For [tex]\( t = 1 \frac{3}{4} \)[/tex], [tex]\( G = 5 \times 1.75 = 8.75 \)[/tex].
- For [tex]\( t = 2 \)[/tex], [tex]\( G = 5 \times 2 = 10 \)[/tex].
- For [tex]\( t = 5 \)[/tex], [tex]\( G = 5 \times 5 = 25 \)[/tex].
### b. Sketch a Graph of [tex]\( G \)[/tex]
To sketch the graph of [tex]\( G \)[/tex] for [tex]\( 0 \leq t \leq 12 \)[/tex]:
1. Plot the points: [tex]\((0, 0), (0.5, 2.5), (1, 5), (1.75, 8.75), (2, 10), (5, 25)\)[/tex], and include a few more points, such as [tex]\( (10, 50) \)[/tex] and [tex]\( (12, 60) \)[/tex].
2. Draw a straight line through these points because [tex]\( G(t) \)[/tex] is a linear function of [tex]\( t \)[/tex] with a slope of 5.
### c. Is [tex]\( G \)[/tex] a Function of [tex]\( t \)[/tex]?
Yes, [tex]\( G \)[/tex] is a function of [tex]\( t \)[/tex]. In a function, each input value [tex]\( t \)[/tex] must correspond to exactly one output value [tex]\( G(t) \)[/tex]. Here, for every specific number of hours [tex]\( t \)[/tex], there is a unique cost [tex]\( G \)[/tex] calculated as [tex]\( G = 5t \)[/tex]. Therefore, [tex]\( G \)[/tex] satisfies the definition of a function of [tex]\( t \)[/tex].
### d. Is [tex]\( t \)[/tex] a Function of [tex]\( G \)[/tex]?
No, [tex]\( t \)[/tex] is not a function of [tex]\( G \)[/tex]. For [tex]\( t \)[/tex] to be a function of [tex]\( G \)[/tex], each dollar amount [tex]\( G \)[/tex] would need to map to exactly one value of [tex]\( t \)[/tex]. However, because [tex]\( G \)[/tex] can have the same value for different [tex]\( t \)[/tex] values (for example, if another payment plan allowed rounding or discounts), [tex]\( t \)[/tex] does not uniquely correspond to each [tex]\( G \)[/tex].
### Is this a Graph of a Function? Explain Your Reasoning.
Yes, the graph of [tex]\( G \)[/tex] vs [tex]\( t \)[/tex] is a graph of a function. To be a function, the graph must pass the vertical line test – meaning that no vertical line should intersect the graph at more than one point. In this case, since [tex]\( G(t) = 5t \)[/tex] is a linear function, any vertical line will intersect the line at exactly one point, confirming that it is indeed the graph of a function.
### a. Complete the Table
We are given the parking rate of $5 per hour. We need to calculate the cost (G) for the given times in hours (t).
[tex]\[ \begin{array}{|c|c|} \hline t \text{ (hours)} & G \text{ (dollars)} \\ \hline 0 & 0 \\ \hline \frac{1}{2} & 2.5 \\ \hline 1 & 5 \\ \hline 1 \frac{3}{4} & 8.75 \\ \hline 2 & 10 \\ \hline 5 & 25 \\ \hline \end{array} \][/tex]
These values are calculated as follows:
- For [tex]\( t = 0 \)[/tex], [tex]\( G = 5 \times 0 = 0 \)[/tex].
- For [tex]\( t = \frac{1}{2} \)[/tex], [tex]\( G = 5 \times 0.5 = 2.5 \)[/tex].
- For [tex]\( t = 1 \)[/tex], [tex]\( G = 5 \times 1 = 5 \)[/tex].
- For [tex]\( t = 1 \frac{3}{4} \)[/tex], [tex]\( G = 5 \times 1.75 = 8.75 \)[/tex].
- For [tex]\( t = 2 \)[/tex], [tex]\( G = 5 \times 2 = 10 \)[/tex].
- For [tex]\( t = 5 \)[/tex], [tex]\( G = 5 \times 5 = 25 \)[/tex].
### b. Sketch a Graph of [tex]\( G \)[/tex]
To sketch the graph of [tex]\( G \)[/tex] for [tex]\( 0 \leq t \leq 12 \)[/tex]:
1. Plot the points: [tex]\((0, 0), (0.5, 2.5), (1, 5), (1.75, 8.75), (2, 10), (5, 25)\)[/tex], and include a few more points, such as [tex]\( (10, 50) \)[/tex] and [tex]\( (12, 60) \)[/tex].
2. Draw a straight line through these points because [tex]\( G(t) \)[/tex] is a linear function of [tex]\( t \)[/tex] with a slope of 5.
### c. Is [tex]\( G \)[/tex] a Function of [tex]\( t \)[/tex]?
Yes, [tex]\( G \)[/tex] is a function of [tex]\( t \)[/tex]. In a function, each input value [tex]\( t \)[/tex] must correspond to exactly one output value [tex]\( G(t) \)[/tex]. Here, for every specific number of hours [tex]\( t \)[/tex], there is a unique cost [tex]\( G \)[/tex] calculated as [tex]\( G = 5t \)[/tex]. Therefore, [tex]\( G \)[/tex] satisfies the definition of a function of [tex]\( t \)[/tex].
### d. Is [tex]\( t \)[/tex] a Function of [tex]\( G \)[/tex]?
No, [tex]\( t \)[/tex] is not a function of [tex]\( G \)[/tex]. For [tex]\( t \)[/tex] to be a function of [tex]\( G \)[/tex], each dollar amount [tex]\( G \)[/tex] would need to map to exactly one value of [tex]\( t \)[/tex]. However, because [tex]\( G \)[/tex] can have the same value for different [tex]\( t \)[/tex] values (for example, if another payment plan allowed rounding or discounts), [tex]\( t \)[/tex] does not uniquely correspond to each [tex]\( G \)[/tex].
### Is this a Graph of a Function? Explain Your Reasoning.
Yes, the graph of [tex]\( G \)[/tex] vs [tex]\( t \)[/tex] is a graph of a function. To be a function, the graph must pass the vertical line test – meaning that no vertical line should intersect the graph at more than one point. In this case, since [tex]\( G(t) = 5t \)[/tex] is a linear function, any vertical line will intersect the line at exactly one point, confirming that it is indeed the graph of a function.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.