Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

According to the Rational Root Theorem, [tex]$-\frac{7}{8}$[/tex] is a potential rational root of which function?

A. [tex]$f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30$[/tex]
B. [tex]$f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28$[/tex]
C. [tex]$f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56$[/tex]
D. [tex]$f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24$[/tex]


Sagot :

To determine for which function [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root, we will apply the Rational Root Theorem. This theorem states that any rational root, in its simplest form [tex]\(\frac{p}{q}\)[/tex], must satisfy the condition that [tex]\(p\)[/tex] is a factor of the constant term (the term without [tex]\(x\)[/tex]) and [tex]\(q\)[/tex] is a factor of the leading coefficient (the coefficient of the term with the highest degree).

Given that [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root, we identify [tex]\(p = -7\)[/tex] and [tex]\(q = 8\)[/tex].

We need to check each provided function:

1. For [tex]\(f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]:
- Constant term: [tex]\(-30\)[/tex]
- Leading coefficient: [tex]\(56\)[/tex]

Checking if [tex]\(7\)[/tex] (the absolute value of [tex]\(p\)[/tex]) is a factor of [tex]\(-30\)[/tex]:
[tex]\[ -30 \div 7 \neq \text{integer} \quad (\text{so } 7 \text{ is not a factor of } -30) \][/tex]

2. For [tex]\(f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]:
- Constant term: [tex]\(-28\)[/tex]
- Leading coefficient: [tex]\(24\)[/tex]

Checking if [tex]\(7\)[/tex] is a factor of [tex]\(-28\)[/tex]:
[tex]\[ -28 \div 7 = -4 \quad (\text{7 is a factor of } -28) \][/tex]

Checking if [tex]\(8\)[/tex] is a factor of [tex]\(24\)[/tex]:
[tex]\[ 24 \div 8 = 3 \quad (\text{8 is a factor of 24}) \][/tex]

Since both conditions are met, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root for this function.

3. For [tex]\(f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]:
- Constant term: [tex]\(-56\)[/tex]
- Leading coefficient: [tex]\(30\)[/tex]

Checking if [tex]\(7\)[/tex] is a factor of [tex]\(-56\)[/tex]:
[tex]\[ -56 \div 7 = -8 \quad (\text{7 is a factor of } -56) \][/tex]

Checking if [tex]\(8\)[/tex] is a factor of [tex]\(30\)[/tex]:
[tex]\[ 30 \div 8 \neq \text{integer} \quad (\text{so } 8 \text{ is not a factor of } 30) \][/tex]

4. For [tex]\(f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]:
- Constant term: [tex]\(-24\)[/tex]
- Leading coefficient: [tex]\(28\)[/tex]

Checking if [tex]\(7\)[/tex] is a factor of [tex]\(-24\)[/tex]:
[tex]\[ -24 \div 7 \neq \text{integer} \quad (\text{7 is not a factor of } -24) \][/tex]

Based on these evaluations, [tex]\(-\frac{7}{8}\)[/tex] can be a potential rational root only for the function [tex]\(f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex].

Hence, according to the Rational Root Theorem, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of the second function:

[tex]\[ f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \][/tex]