Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's evaluate the given function to determine the initial amount of the drug injected into the patient and the amount of the drug remaining in the bloodstream after 8 hours.
The function modeling the drug amount is given by:
[tex]\[ D(h) = 5 e^{-0.45 h} \][/tex]
First, we need to find the initial amount injected, which is the value of [tex]\( D(h) \)[/tex] when [tex]\( h = 0 \)[/tex].
### Finding the Initial Amount
1. Substitute [tex]\( h = 0 \)[/tex] into the function:
[tex]\[ D(0) = 5 e^{-0.45 \cdot 0} \][/tex]
2. Simplify the exponent:
[tex]\[ D(0) = 5 e^{0} \][/tex]
3. Recall that [tex]\( e^0 = 1 \)[/tex]:
[tex]\[ D(0) = 5 \cdot 1 \][/tex]
4. Simplify the multiplication:
[tex]\[ D(0) = 5 \][/tex]
So, the initial amount of the drug injected is [tex]\( 5.0 \)[/tex] milligrams.
### Finding the Amount After 8 Hours
Next, we need to calculate the amount of the drug in the bloodstream after 8 hours, which is the value of [tex]\( D(h) \)[/tex] when [tex]\( h = 8 \)[/tex].
1. Substitute [tex]\( h = 8 \)[/tex] into the function:
[tex]\[ D(8) = 5 e^{-0.45 \cdot 8} \][/tex]
2. Calculate the exponent:
[tex]\[ D(8) = 5 e^{-3.6} \][/tex]
3. Evaluate the exponential function [tex]\( e^{-3.6} \)[/tex]:
[tex]\[ e^{-3.6} \approx 0.02732 \][/tex]
4. Multiply by the constant 5:
[tex]\[ D(8) = 5 \cdot 0.02732 \][/tex]
5. Simplify the multiplication:
[tex]\[ D(8) \approx 0.1366 \][/tex]
Rounding to the nearest hundredth:
[tex]\[ D(8) \approx 0.14 \][/tex]
So, the amount of the drug in the bloodstream after 8 hours is approximately [tex]\( 0.14 \)[/tex] milligrams.
### Final Answer
- Initial amount: [tex]\( 5.0 \)[/tex] milligrams
- Amount after 8 hours: [tex]\( 0.14 \)[/tex] milligrams
The function modeling the drug amount is given by:
[tex]\[ D(h) = 5 e^{-0.45 h} \][/tex]
First, we need to find the initial amount injected, which is the value of [tex]\( D(h) \)[/tex] when [tex]\( h = 0 \)[/tex].
### Finding the Initial Amount
1. Substitute [tex]\( h = 0 \)[/tex] into the function:
[tex]\[ D(0) = 5 e^{-0.45 \cdot 0} \][/tex]
2. Simplify the exponent:
[tex]\[ D(0) = 5 e^{0} \][/tex]
3. Recall that [tex]\( e^0 = 1 \)[/tex]:
[tex]\[ D(0) = 5 \cdot 1 \][/tex]
4. Simplify the multiplication:
[tex]\[ D(0) = 5 \][/tex]
So, the initial amount of the drug injected is [tex]\( 5.0 \)[/tex] milligrams.
### Finding the Amount After 8 Hours
Next, we need to calculate the amount of the drug in the bloodstream after 8 hours, which is the value of [tex]\( D(h) \)[/tex] when [tex]\( h = 8 \)[/tex].
1. Substitute [tex]\( h = 8 \)[/tex] into the function:
[tex]\[ D(8) = 5 e^{-0.45 \cdot 8} \][/tex]
2. Calculate the exponent:
[tex]\[ D(8) = 5 e^{-3.6} \][/tex]
3. Evaluate the exponential function [tex]\( e^{-3.6} \)[/tex]:
[tex]\[ e^{-3.6} \approx 0.02732 \][/tex]
4. Multiply by the constant 5:
[tex]\[ D(8) = 5 \cdot 0.02732 \][/tex]
5. Simplify the multiplication:
[tex]\[ D(8) \approx 0.1366 \][/tex]
Rounding to the nearest hundredth:
[tex]\[ D(8) \approx 0.14 \][/tex]
So, the amount of the drug in the bloodstream after 8 hours is approximately [tex]\( 0.14 \)[/tex] milligrams.
### Final Answer
- Initial amount: [tex]\( 5.0 \)[/tex] milligrams
- Amount after 8 hours: [tex]\( 0.14 \)[/tex] milligrams
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.