Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(\log_3(x + 2) = \log_3(2x^2 - 1)\)[/tex], we need to determine the steps in the correct order. Here is the detailed, step-by-step solution:
1. Step 1: Exponentiate both sides using base 3.
Given:
[tex]\[ \log_3(x + 2) = \log_3(2x^2 - 1) \][/tex]
Raise both sides to the power of 3:
[tex]\[ 3^{\log_3(x + 2)} = 3^{\log_3(2x^2 - 1)} \][/tex]
2. Step 2: Simplify the equation by removing the logarithms.
Since [tex]\(3^{\log_3 A} = A\)[/tex] for any [tex]\(A > 0\)[/tex], we simplify to:
[tex]\[ x + 2 = 2x^2 - 1 \][/tex]
3. Step 3: Rearrange the equation into a standard quadratic form.
Move all terms to one side of the equation to set it to zero:
[tex]\[ x + 2 - (2x^2 - 1) = 0 \][/tex]
Simplify:
[tex]\[ 0 = 2x^2 - x - 3 \][/tex]
4. Step 4: Factor the quadratic equation.
Factor the quadratic equation [tex]\(2x^2 - x - 3 = 0\)[/tex] into two binomials:
[tex]\[ 0 = (2x - 3)(x + 1) \][/tex]
5. Step 5: Set each factor equal to zero and solve for [tex]\(x\)[/tex].
Solve each factor individually:
[tex]\[ 2x - 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Solving these individually gives potential solutions:
[tex]\[ x = \frac{3}{2} \quad \text{or} \quad x = -1 \][/tex]
6. Step 6: State the potential solutions.
The potential solutions of the quadratic equation are:
[tex]\[ x = -1 \quad \text{and} \quad x = \frac{3}{2} \][/tex]
Hence, the correct order of steps to solve the equation [tex]\(\log _3(x+2)=\log _3\left(2 x^2-1\right)\)[/tex] is:
1. [tex]\(3^{\log_3(x+2)}=3^{\log_3(2 x^2-1)}\)[/tex]
2. [tex]\(x+2=2 x^2-1\)[/tex]
3. [tex]\(0=2 x^2-x-3\)[/tex]
4. [tex]\(0=(2 x-3)(x+1)\)[/tex]
5. [tex]\(2 x-3=0\)[/tex] or [tex]\(x+1=0\)[/tex]
6. Potential solutions are -1 and [tex]\(\frac{3}{2}\)[/tex]
1. Step 1: Exponentiate both sides using base 3.
Given:
[tex]\[ \log_3(x + 2) = \log_3(2x^2 - 1) \][/tex]
Raise both sides to the power of 3:
[tex]\[ 3^{\log_3(x + 2)} = 3^{\log_3(2x^2 - 1)} \][/tex]
2. Step 2: Simplify the equation by removing the logarithms.
Since [tex]\(3^{\log_3 A} = A\)[/tex] for any [tex]\(A > 0\)[/tex], we simplify to:
[tex]\[ x + 2 = 2x^2 - 1 \][/tex]
3. Step 3: Rearrange the equation into a standard quadratic form.
Move all terms to one side of the equation to set it to zero:
[tex]\[ x + 2 - (2x^2 - 1) = 0 \][/tex]
Simplify:
[tex]\[ 0 = 2x^2 - x - 3 \][/tex]
4. Step 4: Factor the quadratic equation.
Factor the quadratic equation [tex]\(2x^2 - x - 3 = 0\)[/tex] into two binomials:
[tex]\[ 0 = (2x - 3)(x + 1) \][/tex]
5. Step 5: Set each factor equal to zero and solve for [tex]\(x\)[/tex].
Solve each factor individually:
[tex]\[ 2x - 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Solving these individually gives potential solutions:
[tex]\[ x = \frac{3}{2} \quad \text{or} \quad x = -1 \][/tex]
6. Step 6: State the potential solutions.
The potential solutions of the quadratic equation are:
[tex]\[ x = -1 \quad \text{and} \quad x = \frac{3}{2} \][/tex]
Hence, the correct order of steps to solve the equation [tex]\(\log _3(x+2)=\log _3\left(2 x^2-1\right)\)[/tex] is:
1. [tex]\(3^{\log_3(x+2)}=3^{\log_3(2 x^2-1)}\)[/tex]
2. [tex]\(x+2=2 x^2-1\)[/tex]
3. [tex]\(0=2 x^2-x-3\)[/tex]
4. [tex]\(0=(2 x-3)(x+1)\)[/tex]
5. [tex]\(2 x-3=0\)[/tex] or [tex]\(x+1=0\)[/tex]
6. Potential solutions are -1 and [tex]\(\frac{3}{2}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.