Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the length of each side of a square given its diagonal, we need to use the Pythagorean theorem. The diagonal of a square divides it into two right-angled triangles, where the legs of the triangles are the sides of the square, and the hypotenuse is the diagonal.
Let's denote the side length of the square as [tex]\( s \)[/tex].
1. According to the Pythagorean theorem:
[tex]\[ s^2 + s^2 = (\text{diagonal})^2 \][/tex]
Simplifying, we get:
[tex]\[ 2s^2 = (\text{diagonal})^2 \][/tex]
2. The given diagonal length is 12 inches. Plugging this into the equation:
[tex]\[ 2s^2 = 12^2 \][/tex]
[tex]\[ 2s^2 = 144 \][/tex]
3. Now, solve for [tex]\( s^2 \)[/tex]:
[tex]\[ s^2 = \frac{144}{2} \][/tex]
[tex]\[ s^2 = 72 \][/tex]
4. Taking the square root of both sides to find [tex]\( s \)[/tex]:
[tex]\[ s = \sqrt{72} \][/tex]
[tex]\[ s = \sqrt{36 \times 2} \][/tex]
[tex]\[ s = 6\sqrt{2} \][/tex]
Therefore, the length of each side of the square MNOP is [tex]\( 6 \sqrt{2} \)[/tex] inches. The correct answer is:
[tex]\[ 6 \sqrt{2} \][/tex]
Let's denote the side length of the square as [tex]\( s \)[/tex].
1. According to the Pythagorean theorem:
[tex]\[ s^2 + s^2 = (\text{diagonal})^2 \][/tex]
Simplifying, we get:
[tex]\[ 2s^2 = (\text{diagonal})^2 \][/tex]
2. The given diagonal length is 12 inches. Plugging this into the equation:
[tex]\[ 2s^2 = 12^2 \][/tex]
[tex]\[ 2s^2 = 144 \][/tex]
3. Now, solve for [tex]\( s^2 \)[/tex]:
[tex]\[ s^2 = \frac{144}{2} \][/tex]
[tex]\[ s^2 = 72 \][/tex]
4. Taking the square root of both sides to find [tex]\( s \)[/tex]:
[tex]\[ s = \sqrt{72} \][/tex]
[tex]\[ s = \sqrt{36 \times 2} \][/tex]
[tex]\[ s = 6\sqrt{2} \][/tex]
Therefore, the length of each side of the square MNOP is [tex]\( 6 \sqrt{2} \)[/tex] inches. The correct answer is:
[tex]\[ 6 \sqrt{2} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.