Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the volume of the sphere given that the sphere and cylinder have the same radius and height, and that the volume of the cylinder is [tex]\( 27 \pi \, \text{ft}^3 \)[/tex], let's solve the problem step-by-step.
1. Understanding the Cylinder's Volume:
The volume of a cylinder is given by the formula:
[tex]\[ V_\text{cylinder} = \pi r^2 h \][/tex]
We know from the problem that:
[tex]\[ V_\text{cylinder} = 27 \pi \, \text{ft}^3 \][/tex]
2. Relating the Radius and Height:
The problem states that the sphere and cylinder have the same radius and height. For a sphere, the height in the context gets interpreted as the diameter of the sphere, which is 2 times the radius ([tex]\( h = 2r \)[/tex]).
3. Equating the Volumes:
Since the volume of the cylinder is [tex]\( \pi r^2 h \)[/tex] and we are given that [tex]\( h = 2r \)[/tex], we can substitute this into the cylinder volume formula:
[tex]\[ \pi r^2 (2r) = \pi r^2 \cdot 2r = 2\pi r^3 \][/tex]
Given that this volume equals [tex]\( 27 \pi \)[/tex]:
[tex]\[ 2\pi r^3 = 27 \pi \][/tex]
Dividing both sides by [tex]\( \pi \)[/tex] to simplify:
[tex]\[ 2r^3 = 27 \][/tex]
4. Solving for the Radius:
Next, solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{27}{2} = 13.5 \][/tex]
Therefore, [tex]\( r \)[/tex] can be found as:
[tex]\[ r = \sqrt[3]{13.5} \][/tex]
5. Calculating the Volume of the Sphere:
The volume of a sphere is given by the formula:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi r^3 \][/tex]
Substituting [tex]\( r^3 = 13.5 \)[/tex]:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi (13.5) \][/tex]
6. Simplifying the Sphere's Volume:
Combine the constants:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi \times 13.5 = \frac{4 \times 13.5}{3} \pi = \frac{54}{3} \pi = 18 \pi \, \text{ft}^3 \][/tex]
This value (18π) does not seem consistent with one of the given choices directly; let's use another interpretation quickly in context:
Checking \(V = \frac{2}{3} (27 \pi):
[tex]\[ V = \frac{2}{3} \times 27 \pi = 18 \pi \, \text{ft}^3 \][/tex]
Therefore, the volume of the sphere using given valid context and matching is :
[tex]\[ V = \frac{2}{3}(27 \pi) \][/tex]
So, the correct equation for the volume of the sphere is:
[tex]\[ V = \frac{2}{3}(27 \pi) \][/tex]
1. Understanding the Cylinder's Volume:
The volume of a cylinder is given by the formula:
[tex]\[ V_\text{cylinder} = \pi r^2 h \][/tex]
We know from the problem that:
[tex]\[ V_\text{cylinder} = 27 \pi \, \text{ft}^3 \][/tex]
2. Relating the Radius and Height:
The problem states that the sphere and cylinder have the same radius and height. For a sphere, the height in the context gets interpreted as the diameter of the sphere, which is 2 times the radius ([tex]\( h = 2r \)[/tex]).
3. Equating the Volumes:
Since the volume of the cylinder is [tex]\( \pi r^2 h \)[/tex] and we are given that [tex]\( h = 2r \)[/tex], we can substitute this into the cylinder volume formula:
[tex]\[ \pi r^2 (2r) = \pi r^2 \cdot 2r = 2\pi r^3 \][/tex]
Given that this volume equals [tex]\( 27 \pi \)[/tex]:
[tex]\[ 2\pi r^3 = 27 \pi \][/tex]
Dividing both sides by [tex]\( \pi \)[/tex] to simplify:
[tex]\[ 2r^3 = 27 \][/tex]
4. Solving for the Radius:
Next, solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{27}{2} = 13.5 \][/tex]
Therefore, [tex]\( r \)[/tex] can be found as:
[tex]\[ r = \sqrt[3]{13.5} \][/tex]
5. Calculating the Volume of the Sphere:
The volume of a sphere is given by the formula:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi r^3 \][/tex]
Substituting [tex]\( r^3 = 13.5 \)[/tex]:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi (13.5) \][/tex]
6. Simplifying the Sphere's Volume:
Combine the constants:
[tex]\[ V_\text{sphere} = \frac{4}{3} \pi \times 13.5 = \frac{4 \times 13.5}{3} \pi = \frac{54}{3} \pi = 18 \pi \, \text{ft}^3 \][/tex]
This value (18π) does not seem consistent with one of the given choices directly; let's use another interpretation quickly in context:
Checking \(V = \frac{2}{3} (27 \pi):
[tex]\[ V = \frac{2}{3} \times 27 \pi = 18 \pi \, \text{ft}^3 \][/tex]
Therefore, the volume of the sphere using given valid context and matching is :
[tex]\[ V = \frac{2}{3}(27 \pi) \][/tex]
So, the correct equation for the volume of the sphere is:
[tex]\[ V = \frac{2}{3}(27 \pi) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.