Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the potential rational roots of the polynomial [tex]\( f(x) = 15x^{11} - 6x^8 + x^3 - 4x + 3 \)[/tex] using the Rational Root Theorem, we follow these steps:
1. Identify the constant term ([tex]\( p \)[/tex]) and the leading coefficient ([tex]\( q \)[/tex]):
- The constant term ([tex]\( p \)[/tex]) is 3.
- The leading coefficient ([tex]\( q \)[/tex]) is 15.
2. List the factors of each:
- Factors of [tex]\( p = 3 \)[/tex]: [tex]\( \pm 1, \pm 3 \)[/tex]
- Factors of [tex]\( q = 15 \)[/tex]: [tex]\( \pm 1, \pm 3, \pm 5, \pm 15 \)[/tex]
3. Form all possible fractions [tex]\( \frac{p}{q} \)[/tex]:
- Using the factors of [tex]\( p \)[/tex] and [tex]\( q \)[/tex], we create fractions [tex]\( \frac{p}{q} \)[/tex] which are the possible rational roots of the polynomial.
The possible combinations are:
- [tex]\( \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{15}, \frac{3}{1}, \frac{3}{3}, \frac{3}{5}, \frac{3}{15} \)[/tex]
- Including both positive and negative values for each combination.
Simplifying these fractions, we get:
- [tex]\( \pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 3, \pm \frac{3}{5} \)[/tex]
These are all possible rational roots of the given polynomial.
Given the provided choices, the correct list of all potential rational roots is:
[tex]\( \pm \frac{1}{15}, \pm \frac{1}{5}, \pm \frac{1}{3}, \pm \frac{3}{5}, \pm 1, \pm 3 \)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\pm \frac{1}{15}, \pm \frac{1}{5}, \pm \frac{1}{3}, \pm \frac{3}{5}, \pm 1, \pm 3} \][/tex]
1. Identify the constant term ([tex]\( p \)[/tex]) and the leading coefficient ([tex]\( q \)[/tex]):
- The constant term ([tex]\( p \)[/tex]) is 3.
- The leading coefficient ([tex]\( q \)[/tex]) is 15.
2. List the factors of each:
- Factors of [tex]\( p = 3 \)[/tex]: [tex]\( \pm 1, \pm 3 \)[/tex]
- Factors of [tex]\( q = 15 \)[/tex]: [tex]\( \pm 1, \pm 3, \pm 5, \pm 15 \)[/tex]
3. Form all possible fractions [tex]\( \frac{p}{q} \)[/tex]:
- Using the factors of [tex]\( p \)[/tex] and [tex]\( q \)[/tex], we create fractions [tex]\( \frac{p}{q} \)[/tex] which are the possible rational roots of the polynomial.
The possible combinations are:
- [tex]\( \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{15}, \frac{3}{1}, \frac{3}{3}, \frac{3}{5}, \frac{3}{15} \)[/tex]
- Including both positive and negative values for each combination.
Simplifying these fractions, we get:
- [tex]\( \pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 3, \pm \frac{3}{5} \)[/tex]
These are all possible rational roots of the given polynomial.
Given the provided choices, the correct list of all potential rational roots is:
[tex]\( \pm \frac{1}{15}, \pm \frac{1}{5}, \pm \frac{1}{3}, \pm \frac{3}{5}, \pm 1, \pm 3 \)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\pm \frac{1}{15}, \pm \frac{1}{5}, \pm \frac{1}{3}, \pm \frac{3}{5}, \pm 1, \pm 3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.