Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given relationships have the same constant of proportionality as the equation [tex]\( y = \frac{5}{2} x \)[/tex], we need to compute and compare the constants of proportionality for each option.
### Step-by-Step Solution:
1. Compute the Constant of Proportionality for [tex]\( y = \frac{5}{2} x \)[/tex] (the given relationship):
- The constant of proportionality here is clearly [tex]\(\frac{5}{2} = 2.5\)[/tex].
2. Analyze Option (A): [tex]\( 5y = 2x \)[/tex]
- Rewrite the equation in the form [tex]\( y = kx \)[/tex] to find the constant of proportionality [tex]\( k \)[/tex].
- [tex]\( 5y = 2x \)[/tex]
- Divide both sides by 5 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{2}{5} x \][/tex]
- The constant of proportionality is [tex]\(\frac{2}{5} = 0.4\)[/tex].
3. Analyze Option (7): [tex]\( 8y = 20x \)[/tex]
- Rewrite the equation in the form [tex]\( y = kx \)[/tex] to find the constant of proportionality [tex]\( k \)[/tex].
- [tex]\( 8y = 20x \)[/tex]
- Divide both sides by 8 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20}{8} x \][/tex]
- Simplify [tex]\(\frac{20}{8}\)[/tex]:
[tex]\[ \frac{20}{8} = 2.5 \][/tex]
- The constant of proportionality is 2.5.
4. Analyze the Tabular Data:
- Given pairs [tex]\((x, y)\)[/tex] from the table:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ 1 & 2.5 \\ 4 & 10 \\ 7 & 17.5 \\ \hline \end{array} \][/tex]
- Compute the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
- For [tex]\( x = 1 \)[/tex]: [tex]\( \frac{2.5}{1} = 2.5 \)[/tex]
- For [tex]\( x = 4 \)[/tex]: [tex]\( \frac{10}{4} = 2.5 \)[/tex]
- For [tex]\( x = 7 \)[/tex]: [tex]\( \frac{17.5}{7} = 2.5 \)[/tex]
- All computed ratios are 2.5, so the tabular data has a constant of proportionality of 2.5.
### Summary of Results:
- Option [tex]\( (A) \)[/tex]: constant of proportionality = 0.4
- Option [tex]\( (7) \)[/tex]: constant of proportionality = 2.5
- Table Data: constant of proportionality = 2.5
Therefore, the relationships that have the same constant of proportionality (2.5) as [tex]\( y = \frac{5}{2} x \)[/tex] are:
1. Option (7) [tex]\( 8y = 20x \)[/tex]
2. The tabular data
[tex]\[ \boxed{(7) \text{ and the tabular data}} \][/tex]
### Step-by-Step Solution:
1. Compute the Constant of Proportionality for [tex]\( y = \frac{5}{2} x \)[/tex] (the given relationship):
- The constant of proportionality here is clearly [tex]\(\frac{5}{2} = 2.5\)[/tex].
2. Analyze Option (A): [tex]\( 5y = 2x \)[/tex]
- Rewrite the equation in the form [tex]\( y = kx \)[/tex] to find the constant of proportionality [tex]\( k \)[/tex].
- [tex]\( 5y = 2x \)[/tex]
- Divide both sides by 5 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{2}{5} x \][/tex]
- The constant of proportionality is [tex]\(\frac{2}{5} = 0.4\)[/tex].
3. Analyze Option (7): [tex]\( 8y = 20x \)[/tex]
- Rewrite the equation in the form [tex]\( y = kx \)[/tex] to find the constant of proportionality [tex]\( k \)[/tex].
- [tex]\( 8y = 20x \)[/tex]
- Divide both sides by 8 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20}{8} x \][/tex]
- Simplify [tex]\(\frac{20}{8}\)[/tex]:
[tex]\[ \frac{20}{8} = 2.5 \][/tex]
- The constant of proportionality is 2.5.
4. Analyze the Tabular Data:
- Given pairs [tex]\((x, y)\)[/tex] from the table:
[tex]\[ \begin{array}{|cc|} \hline x & y \\ 1 & 2.5 \\ 4 & 10 \\ 7 & 17.5 \\ \hline \end{array} \][/tex]
- Compute the ratio [tex]\( \frac{y}{x} \)[/tex] for each pair:
- For [tex]\( x = 1 \)[/tex]: [tex]\( \frac{2.5}{1} = 2.5 \)[/tex]
- For [tex]\( x = 4 \)[/tex]: [tex]\( \frac{10}{4} = 2.5 \)[/tex]
- For [tex]\( x = 7 \)[/tex]: [tex]\( \frac{17.5}{7} = 2.5 \)[/tex]
- All computed ratios are 2.5, so the tabular data has a constant of proportionality of 2.5.
### Summary of Results:
- Option [tex]\( (A) \)[/tex]: constant of proportionality = 0.4
- Option [tex]\( (7) \)[/tex]: constant of proportionality = 2.5
- Table Data: constant of proportionality = 2.5
Therefore, the relationships that have the same constant of proportionality (2.5) as [tex]\( y = \frac{5}{2} x \)[/tex] are:
1. Option (7) [tex]\( 8y = 20x \)[/tex]
2. The tabular data
[tex]\[ \boxed{(7) \text{ and the tabular data}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.