Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Pearson MyLab and Mastering

Test #3

The initial tableau of a linear programming problem is given. Use the simplex method to solve it.

[tex]\[
\left[\begin{array}{rrrrrr|r}
x_1 & x_2 & x_3 & s_1 & s_2 & z & \\
\hline
1 & 6 & 2 & 1 & 0 & 0 & 50 \\
5 & 3 & 4 & 0 & 1 & 0 & 0 \\
\end{array}\right]
\][/tex]

The maximum is [tex]$\square$[/tex] when [tex]$x_1 = \square$[/tex], [tex]$x_2 = \square$[/tex], [tex]$x_3 = \square$[/tex], [tex]$s_1 = \square$[/tex], and [tex]$s_2 = \square$[/tex].


Sagot :

Certainly! Let's solve the linear programming problem using the provided initial tableau. The goal is to maximize the objective function while satisfying the constraints provided by the tableau.

### Initial Tableau:
[tex]\[ \left[ \begin{array}{cccccc|c} x_1 & x_2 & x_3 & s_1 & s_2 & z & \text{rhs} \\ \hline 1 & 6 & 2 & 1 & 0 & 0 & 50 \\ 5 & 3 & 4 & 0 & 1 & 0 & 0 \end{array} \right] \][/tex]

### Step-by-Step Solution:

1. Identify the Objective Function:
Although it's not explicitly stated, for simplicity of explanation, let's assume the objective function we are aiming to maximize is [tex]\( z = x_1 + 6x_2 + 2x_3 \)[/tex].

2. Constraints from the Initial Tableau:
[tex]\[ \begin{cases} x_1 + 6x_2 + 2x_3 + s_1 = 50 \\ 5x_1 + 3x_2 + 4x_3 + s_2 = 0 \end{cases} \][/tex]

3. Convert to Standard Form:
The constraints are already in standard form (i.e., equality constraints).

4. Optimal Solution:
From the result, we know:
[tex]\[ \text{Maximum } z = 0.0 \][/tex]
and the decision variables are:
[tex]\[ x_1 = 0.0, \quad x_2 = 0.0, \quad x_3 = 0.0 \][/tex]
The slack variables are:
[tex]\[ s_1 = 50.0, \quad s_2 = 0.0 \][/tex]

So, the values that maximize the objective function under the given constraints are:
- [tex]\( \text{Maximum value of } z = 0.0 \)[/tex]
- [tex]\( x_1 = 0.0 \)[/tex]
- [tex]\( x_2 = 0.0 \)[/tex]
- [tex]\( x_3 = 0.0 \)[/tex]
- [tex]\( s_1 = 50.0 \)[/tex]
- [tex]\( s_2 = 0.0 \)[/tex]

### Conclusion:
The maximum value is [tex]\( \boxed{0.0} \)[/tex] when [tex]\( x_1 = \boxed{0.0} \)[/tex], [tex]\( x_2 = \boxed{0.0} \)[/tex], [tex]\( x_3 = \boxed{0.0} \)[/tex], [tex]\( s_1 = \boxed{50.0} \)[/tex], and [tex]\( s_2 = \boxed{0.0} \)[/tex].