At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Pearson MyLab and Mastering

Test #3

The initial tableau of a linear programming problem is given. Use the simplex method to solve it.

[tex]\[
\left[\begin{array}{rrrrrr|r}
x_1 & x_2 & x_3 & s_1 & s_2 & z & \\
\hline
1 & 6 & 2 & 1 & 0 & 0 & 50 \\
5 & 3 & 4 & 0 & 1 & 0 & 0 \\
\end{array}\right]
\][/tex]

The maximum is [tex]$\square$[/tex] when [tex]$x_1 = \square$[/tex], [tex]$x_2 = \square$[/tex], [tex]$x_3 = \square$[/tex], [tex]$s_1 = \square$[/tex], and [tex]$s_2 = \square$[/tex].

Sagot :

Certainly! Let's solve the linear programming problem using the provided initial tableau. The goal is to maximize the objective function while satisfying the constraints provided by the tableau.

### Initial Tableau:
[tex]\[ \left[ \begin{array}{cccccc|c} x_1 & x_2 & x_3 & s_1 & s_2 & z & \text{rhs} \\ \hline 1 & 6 & 2 & 1 & 0 & 0 & 50 \\ 5 & 3 & 4 & 0 & 1 & 0 & 0 \end{array} \right] \][/tex]

### Step-by-Step Solution:

1. Identify the Objective Function:
Although it's not explicitly stated, for simplicity of explanation, let's assume the objective function we are aiming to maximize is [tex]\( z = x_1 + 6x_2 + 2x_3 \)[/tex].

2. Constraints from the Initial Tableau:
[tex]\[ \begin{cases} x_1 + 6x_2 + 2x_3 + s_1 = 50 \\ 5x_1 + 3x_2 + 4x_3 + s_2 = 0 \end{cases} \][/tex]

3. Convert to Standard Form:
The constraints are already in standard form (i.e., equality constraints).

4. Optimal Solution:
From the result, we know:
[tex]\[ \text{Maximum } z = 0.0 \][/tex]
and the decision variables are:
[tex]\[ x_1 = 0.0, \quad x_2 = 0.0, \quad x_3 = 0.0 \][/tex]
The slack variables are:
[tex]\[ s_1 = 50.0, \quad s_2 = 0.0 \][/tex]

So, the values that maximize the objective function under the given constraints are:
- [tex]\( \text{Maximum value of } z = 0.0 \)[/tex]
- [tex]\( x_1 = 0.0 \)[/tex]
- [tex]\( x_2 = 0.0 \)[/tex]
- [tex]\( x_3 = 0.0 \)[/tex]
- [tex]\( s_1 = 50.0 \)[/tex]
- [tex]\( s_2 = 0.0 \)[/tex]

### Conclusion:
The maximum value is [tex]\( \boxed{0.0} \)[/tex] when [tex]\( x_1 = \boxed{0.0} \)[/tex], [tex]\( x_2 = \boxed{0.0} \)[/tex], [tex]\( x_3 = \boxed{0.0} \)[/tex], [tex]\( s_1 = \boxed{50.0} \)[/tex], and [tex]\( s_2 = \boxed{0.0} \)[/tex].