Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the [tex]\( y \)[/tex]-component of the total force acting on the block, let's break down the problem step by step:
1. Identify the forces and their angles:
- The first force [tex]\( F_1 \)[/tex] has a magnitude of 78.5 N and is directed at an angle of [tex]\( 0^\circ \)[/tex] from the positive x-axis.
- The second force [tex]\( F_2 \)[/tex] has a magnitude of 96.5 N and is directed at an angle of [tex]\( 273^\circ \)[/tex] from the positive x-axis.
2. Calculate the [tex]\( y \)[/tex]-component of each force:
The [tex]\( y \)[/tex]-component of a force can be found using the formula:
[tex]\[ F_y = F \sin(\theta) \][/tex]
- For the first force [tex]\( F_1 \)[/tex] at [tex]\( 0^\circ \)[/tex]:
[tex]\[ F_{1y} = 78.5 \sin(0^\circ) \][/tex]
Since [tex]\( \sin(0^\circ) = 0 \)[/tex], the [tex]\( y \)[/tex]-component of the first force is:
[tex]\[ F_{1y} = 78.5 \times 0 = 0.0 \, \text{N} \][/tex]
- For the second force [tex]\( F_2 \)[/tex] at [tex]\( 273^\circ \)[/tex]:
[tex]\[ F_{2y} = 96.5 \sin(273^\circ) \][/tex]
The sine of [tex]\( 273^\circ \)[/tex] is a negative value because [tex]\( 273^\circ \)[/tex] is in the fourth quadrant where the sine function is negative. More specifically:
[tex]\[ \sin(273^\circ) \approx \sin(360^\circ - 87^\circ) = -\sin(87^\circ) \approx -0.998 \][/tex]
Therefore:
[tex]\[ F_{2y} = 96.5 \times -0.998 = -96.36775010381638 \, \text{N} \][/tex]
3. Sum the [tex]\( y \)[/tex]-components of both forces:
[tex]\[ \text{Total } F_y = F_{1y} + F_{2y} = 0.0 + (-96.36775010381638) \][/tex]
So, the [tex]\( y \)[/tex]-component of the total force is:
[tex]\[ \overrightarrow{F_y} \approx -96.36775010381638 \, \text{N} \][/tex]
Thus, the [tex]\( y \)[/tex]-component of the total force acting on the block is:
[tex]\[ \boxed{-96.36775010381638 \, \text{N}} \][/tex]
1. Identify the forces and their angles:
- The first force [tex]\( F_1 \)[/tex] has a magnitude of 78.5 N and is directed at an angle of [tex]\( 0^\circ \)[/tex] from the positive x-axis.
- The second force [tex]\( F_2 \)[/tex] has a magnitude of 96.5 N and is directed at an angle of [tex]\( 273^\circ \)[/tex] from the positive x-axis.
2. Calculate the [tex]\( y \)[/tex]-component of each force:
The [tex]\( y \)[/tex]-component of a force can be found using the formula:
[tex]\[ F_y = F \sin(\theta) \][/tex]
- For the first force [tex]\( F_1 \)[/tex] at [tex]\( 0^\circ \)[/tex]:
[tex]\[ F_{1y} = 78.5 \sin(0^\circ) \][/tex]
Since [tex]\( \sin(0^\circ) = 0 \)[/tex], the [tex]\( y \)[/tex]-component of the first force is:
[tex]\[ F_{1y} = 78.5 \times 0 = 0.0 \, \text{N} \][/tex]
- For the second force [tex]\( F_2 \)[/tex] at [tex]\( 273^\circ \)[/tex]:
[tex]\[ F_{2y} = 96.5 \sin(273^\circ) \][/tex]
The sine of [tex]\( 273^\circ \)[/tex] is a negative value because [tex]\( 273^\circ \)[/tex] is in the fourth quadrant where the sine function is negative. More specifically:
[tex]\[ \sin(273^\circ) \approx \sin(360^\circ - 87^\circ) = -\sin(87^\circ) \approx -0.998 \][/tex]
Therefore:
[tex]\[ F_{2y} = 96.5 \times -0.998 = -96.36775010381638 \, \text{N} \][/tex]
3. Sum the [tex]\( y \)[/tex]-components of both forces:
[tex]\[ \text{Total } F_y = F_{1y} + F_{2y} = 0.0 + (-96.36775010381638) \][/tex]
So, the [tex]\( y \)[/tex]-component of the total force is:
[tex]\[ \overrightarrow{F_y} \approx -96.36775010381638 \, \text{N} \][/tex]
Thus, the [tex]\( y \)[/tex]-component of the total force acting on the block is:
[tex]\[ \boxed{-96.36775010381638 \, \text{N}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.