Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let’s solve for the resistance of a 2.0 m copper wire with a given resistivity and cross-sectional area.
The formula for calculating the resistance [tex]\( R \)[/tex] of a wire is given by:
[tex]\[ R = \frac{\rho L}{A} \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the resistivity of the material (for copper, [tex]\( \rho = 1.7 \times 10^{-8} \ \Omega \cdot m \)[/tex])
- [tex]\( L \)[/tex] is the length of the wire (2.0 m)
- [tex]\( A \)[/tex] is the cross-sectional area of the wire ([tex]\( 2.08 \times 10^{-6} \ m^2 \)[/tex])
Now, substitute the known values into the formula:
[tex]\[ R = \frac{(1.7 \times 10^{-8} \ \Omega \cdot m) \times 2.0 \ m}{2.08 \times 10^{-6} \ m^2} \][/tex]
First, multiply the resistivity by the length of the wire:
[tex]\[ (1.7 \times 10^{-8}) \times 2.0 = 3.4 \times 10^{-8} \ \Omega \cdot m^2 \][/tex]
Next, divide by the cross-sectional area:
[tex]\[ R = \frac{3.4 \times 10^{-8} \ \Omega \cdot m^2}{2.08 \times 10^{-6} \ m^2} \][/tex]
[tex]\[ R \approx 0.016346153846153847 \ \Omega \][/tex]
Thus, the resistance of the copper wire is approximately [tex]\( 0.0163 \ \Omega \)[/tex].
Matching this to the provided options, the closest answer is:
A. [tex]\( 1.6 \times 10^{-2} \Omega \)[/tex]
The formula for calculating the resistance [tex]\( R \)[/tex] of a wire is given by:
[tex]\[ R = \frac{\rho L}{A} \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the resistivity of the material (for copper, [tex]\( \rho = 1.7 \times 10^{-8} \ \Omega \cdot m \)[/tex])
- [tex]\( L \)[/tex] is the length of the wire (2.0 m)
- [tex]\( A \)[/tex] is the cross-sectional area of the wire ([tex]\( 2.08 \times 10^{-6} \ m^2 \)[/tex])
Now, substitute the known values into the formula:
[tex]\[ R = \frac{(1.7 \times 10^{-8} \ \Omega \cdot m) \times 2.0 \ m}{2.08 \times 10^{-6} \ m^2} \][/tex]
First, multiply the resistivity by the length of the wire:
[tex]\[ (1.7 \times 10^{-8}) \times 2.0 = 3.4 \times 10^{-8} \ \Omega \cdot m^2 \][/tex]
Next, divide by the cross-sectional area:
[tex]\[ R = \frac{3.4 \times 10^{-8} \ \Omega \cdot m^2}{2.08 \times 10^{-6} \ m^2} \][/tex]
[tex]\[ R \approx 0.016346153846153847 \ \Omega \][/tex]
Thus, the resistance of the copper wire is approximately [tex]\( 0.0163 \ \Omega \)[/tex].
Matching this to the provided options, the closest answer is:
A. [tex]\( 1.6 \times 10^{-2} \Omega \)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.