Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which student's sequence represents a geometric sequence, we need to identify the sequences where the ratio between consecutive terms is constant. Let's look at each student's sequence in turn.
1. Andre's Sequence:
[tex]\[ -\frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
To be a geometric sequence, the ratio between each pair of consecutive terms must be constant.
2. Brenda's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \ldots \][/tex]
Again, we need to determine if the ratios are constant.
3. Camille's Sequence:
[tex]\[ \frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Checking for a constant ratio between terms.
4. Doug's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Verifying if each term is obtained by multiplying the previous term by a constant ratio.
After reviewing the sequences, it turns out that Doug's sequence is the one with a constant ratio between each pair of consecutive terms, which means Doug wrote a geometric sequence.
Conclusion:
Doug is the student who wrote a geometric sequence.
1. Andre's Sequence:
[tex]\[ -\frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
To be a geometric sequence, the ratio between each pair of consecutive terms must be constant.
2. Brenda's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, \frac{3}{32}, \ldots \][/tex]
Again, we need to determine if the ratios are constant.
3. Camille's Sequence:
[tex]\[ \frac{3}{4}, \frac{3}{8}, -\frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Checking for a constant ratio between terms.
4. Doug's Sequence:
[tex]\[ \frac{3}{4}, -\frac{3}{8}, \frac{3}{16}, -\frac{3}{32}, \ldots \][/tex]
Verifying if each term is obtained by multiplying the previous term by a constant ratio.
After reviewing the sequences, it turns out that Doug's sequence is the one with a constant ratio between each pair of consecutive terms, which means Doug wrote a geometric sequence.
Conclusion:
Doug is the student who wrote a geometric sequence.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.