At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which graph represents the function [tex]\(f(x) = \frac{5 - 5x^2}{x^2}\)[/tex], let's analyze the behavior and key characteristics of the function step by step.
### Step 1: Simplify the Function
First, let's simplify the given function:
[tex]\[ f(x) = \frac{5 - 5x^2}{x^2} \][/tex]
We can factor out a common factor from the numerator:
[tex]\[ f(x) = \frac{5(1 - x^2)}{x^2} \][/tex]
Next, we can separate the terms in the fraction:
[tex]\[ f(x) = 5 \left( \frac{1}{x^2} - 1 \right) \][/tex]
This simplifies to:
[tex]\[ f(x) = 5 \left( \frac{1 - x^2}{x^2} \right) = 5 \left( \frac{1}{x^2} - 1 \right) \][/tex]
[tex]\[ f(x) = \frac{5}{x^2} - 5 \][/tex]
### Step 2: Determine Key Characteristics
Now, let’s determine the key characteristics of the function based on its simplified form:
#### i. Vertical Asymptotes
The function will have a vertical asymptote where [tex]\(x^2 = 0\)[/tex], which occurs at [tex]\(x = 0\)[/tex]. So, there is a vertical asymptote at [tex]\(x = 0\)[/tex].
#### ii. Horizontal Asymptote
As [tex]\(x\)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{5}{x^2} \)[/tex] approaches 0. Therefore, the horizontal asymptote is at [tex]\(y = -5\)[/tex].
#### iii. Intercepts
- y-intercept: The function is undefined at [tex]\(x = 0\)[/tex], so there is no y-intercept.
- x-intercepts: Set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ \frac{5}{x^2} - 5 = 0 \][/tex]
[tex]\[ \frac{5}{x^2} = 5 \][/tex]
[tex]\[ \frac{1}{x^2} = 1 \][/tex]
[tex]\[ x^2 = 1 \][/tex]
Therefore, [tex]\(x = 1\)[/tex] and [tex]\(x = -1\)[/tex] are the x-intercepts.
### Step 3: Behavior Analysis
- For [tex]\(x > 1\)[/tex] or [tex]\(x < -1\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex] is positive and less than 5, so [tex]\(f(x)\)[/tex] is negative and approaches -5.
- For [tex]\(0 < |x| < 1\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex] is greater than 5, so [tex]\(f(x)\)[/tex] is positive.
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from either side, [tex]\(\frac{5}{x^2}\to \infty\)[/tex], and thus [tex]\(f(x) \to \infty\)[/tex].
### Step 4: Graph Representation
Combining all the characteristics:
- The graph has vertical asymptote at [tex]\(x = 0\)[/tex].
- The graph has a horizontal asymptote at [tex]\(y = -5\)[/tex].
- The graph intersects the x-axis at [tex]\(x = 1\)[/tex] and [tex]\(x = -1\)[/tex].
- The function is positive between [tex]\(-1\)[/tex] and [tex]\(1\)[/tex] (excluding [tex]\(0\)[/tex]) and negative outside that range.
By analyzing these characteristics, we can identify the correct graph representation of the function [tex]\(f(x) = \frac{5 - 5x^2}{x^2}\)[/tex]. The correct graph will show the described behavior around the key points and asymptotes.
### Step 1: Simplify the Function
First, let's simplify the given function:
[tex]\[ f(x) = \frac{5 - 5x^2}{x^2} \][/tex]
We can factor out a common factor from the numerator:
[tex]\[ f(x) = \frac{5(1 - x^2)}{x^2} \][/tex]
Next, we can separate the terms in the fraction:
[tex]\[ f(x) = 5 \left( \frac{1}{x^2} - 1 \right) \][/tex]
This simplifies to:
[tex]\[ f(x) = 5 \left( \frac{1 - x^2}{x^2} \right) = 5 \left( \frac{1}{x^2} - 1 \right) \][/tex]
[tex]\[ f(x) = \frac{5}{x^2} - 5 \][/tex]
### Step 2: Determine Key Characteristics
Now, let’s determine the key characteristics of the function based on its simplified form:
#### i. Vertical Asymptotes
The function will have a vertical asymptote where [tex]\(x^2 = 0\)[/tex], which occurs at [tex]\(x = 0\)[/tex]. So, there is a vertical asymptote at [tex]\(x = 0\)[/tex].
#### ii. Horizontal Asymptote
As [tex]\(x\)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{5}{x^2} \)[/tex] approaches 0. Therefore, the horizontal asymptote is at [tex]\(y = -5\)[/tex].
#### iii. Intercepts
- y-intercept: The function is undefined at [tex]\(x = 0\)[/tex], so there is no y-intercept.
- x-intercepts: Set [tex]\(f(x) = 0\)[/tex]:
[tex]\[ \frac{5}{x^2} - 5 = 0 \][/tex]
[tex]\[ \frac{5}{x^2} = 5 \][/tex]
[tex]\[ \frac{1}{x^2} = 1 \][/tex]
[tex]\[ x^2 = 1 \][/tex]
Therefore, [tex]\(x = 1\)[/tex] and [tex]\(x = -1\)[/tex] are the x-intercepts.
### Step 3: Behavior Analysis
- For [tex]\(x > 1\)[/tex] or [tex]\(x < -1\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex] is positive and less than 5, so [tex]\(f(x)\)[/tex] is negative and approaches -5.
- For [tex]\(0 < |x| < 1\)[/tex], [tex]\(\frac{5}{x^2}\)[/tex] is greater than 5, so [tex]\(f(x)\)[/tex] is positive.
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from either side, [tex]\(\frac{5}{x^2}\to \infty\)[/tex], and thus [tex]\(f(x) \to \infty\)[/tex].
### Step 4: Graph Representation
Combining all the characteristics:
- The graph has vertical asymptote at [tex]\(x = 0\)[/tex].
- The graph has a horizontal asymptote at [tex]\(y = -5\)[/tex].
- The graph intersects the x-axis at [tex]\(x = 1\)[/tex] and [tex]\(x = -1\)[/tex].
- The function is positive between [tex]\(-1\)[/tex] and [tex]\(1\)[/tex] (excluding [tex]\(0\)[/tex]) and negative outside that range.
By analyzing these characteristics, we can identify the correct graph representation of the function [tex]\(f(x) = \frac{5 - 5x^2}{x^2}\)[/tex]. The correct graph will show the described behavior around the key points and asymptotes.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.