Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the standard deviation of Omar's sample data: [tex]\(13, 17, 9, 21\)[/tex], we will follow these steps.
1. Calculate the mean ([tex]\(\bar{x}\)[/tex]):
The mean is the average of all the numbers in the data set.
[tex]\[ \bar{x} = \frac{13 + 17 + 9 + 21}{4} = \frac{60}{4} = 15 \][/tex]
2. Calculate each deviation from the mean:
We subtract the mean from each number in the data set.
[tex]\[ \begin{align*} 13 - 15 &= -2 \\ 17 - 15 &= 2 \\ 9 - 15 &= -6 \\ 21 - 15 &= 6 \\ \end{align*} \][/tex]
3. Square each deviation:
Squaring each of the deviations calculated in the previous step.
[tex]\[ \begin{align*} (-2)^2 &= 4 \\ 2^2 &= 4 \\ (-6)^2 &= 36 \\ 6^2 &= 36 \\ \end{align*} \][/tex]
4. Calculate the variance ([tex]\(s^2\)[/tex]):
Variance is the average of these squared deviations. Since this is a sample, we divide by [tex]\(n - 1\)[/tex] (where [tex]\(n\)[/tex] is the number of data points).
[tex]\[ s^2 = \frac{4 + 4 + 36 + 36}{4 - 1}=\frac{80}{3}\approx 26.67 \][/tex]
5. Calculate the standard deviation ([tex]\(s\)[/tex]):
Standard deviation is the square root of the variance.
[tex]\[ s = \sqrt{26.67} \approx 5.16 \][/tex]
So, the standard deviation for Omar's data is approximately [tex]\(5.2\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{5.2} \][/tex]
1. Calculate the mean ([tex]\(\bar{x}\)[/tex]):
The mean is the average of all the numbers in the data set.
[tex]\[ \bar{x} = \frac{13 + 17 + 9 + 21}{4} = \frac{60}{4} = 15 \][/tex]
2. Calculate each deviation from the mean:
We subtract the mean from each number in the data set.
[tex]\[ \begin{align*} 13 - 15 &= -2 \\ 17 - 15 &= 2 \\ 9 - 15 &= -6 \\ 21 - 15 &= 6 \\ \end{align*} \][/tex]
3. Square each deviation:
Squaring each of the deviations calculated in the previous step.
[tex]\[ \begin{align*} (-2)^2 &= 4 \\ 2^2 &= 4 \\ (-6)^2 &= 36 \\ 6^2 &= 36 \\ \end{align*} \][/tex]
4. Calculate the variance ([tex]\(s^2\)[/tex]):
Variance is the average of these squared deviations. Since this is a sample, we divide by [tex]\(n - 1\)[/tex] (where [tex]\(n\)[/tex] is the number of data points).
[tex]\[ s^2 = \frac{4 + 4 + 36 + 36}{4 - 1}=\frac{80}{3}\approx 26.67 \][/tex]
5. Calculate the standard deviation ([tex]\(s\)[/tex]):
Standard deviation is the square root of the variance.
[tex]\[ s = \sqrt{26.67} \approx 5.16 \][/tex]
So, the standard deviation for Omar's data is approximately [tex]\(5.2\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{5.2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.