Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the standard deviation of Omar's sample data: [tex]\(13, 17, 9, 21\)[/tex], we will follow these steps.
1. Calculate the mean ([tex]\(\bar{x}\)[/tex]):
The mean is the average of all the numbers in the data set.
[tex]\[ \bar{x} = \frac{13 + 17 + 9 + 21}{4} = \frac{60}{4} = 15 \][/tex]
2. Calculate each deviation from the mean:
We subtract the mean from each number in the data set.
[tex]\[ \begin{align*} 13 - 15 &= -2 \\ 17 - 15 &= 2 \\ 9 - 15 &= -6 \\ 21 - 15 &= 6 \\ \end{align*} \][/tex]
3. Square each deviation:
Squaring each of the deviations calculated in the previous step.
[tex]\[ \begin{align*} (-2)^2 &= 4 \\ 2^2 &= 4 \\ (-6)^2 &= 36 \\ 6^2 &= 36 \\ \end{align*} \][/tex]
4. Calculate the variance ([tex]\(s^2\)[/tex]):
Variance is the average of these squared deviations. Since this is a sample, we divide by [tex]\(n - 1\)[/tex] (where [tex]\(n\)[/tex] is the number of data points).
[tex]\[ s^2 = \frac{4 + 4 + 36 + 36}{4 - 1}=\frac{80}{3}\approx 26.67 \][/tex]
5. Calculate the standard deviation ([tex]\(s\)[/tex]):
Standard deviation is the square root of the variance.
[tex]\[ s = \sqrt{26.67} \approx 5.16 \][/tex]
So, the standard deviation for Omar's data is approximately [tex]\(5.2\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{5.2} \][/tex]
1. Calculate the mean ([tex]\(\bar{x}\)[/tex]):
The mean is the average of all the numbers in the data set.
[tex]\[ \bar{x} = \frac{13 + 17 + 9 + 21}{4} = \frac{60}{4} = 15 \][/tex]
2. Calculate each deviation from the mean:
We subtract the mean from each number in the data set.
[tex]\[ \begin{align*} 13 - 15 &= -2 \\ 17 - 15 &= 2 \\ 9 - 15 &= -6 \\ 21 - 15 &= 6 \\ \end{align*} \][/tex]
3. Square each deviation:
Squaring each of the deviations calculated in the previous step.
[tex]\[ \begin{align*} (-2)^2 &= 4 \\ 2^2 &= 4 \\ (-6)^2 &= 36 \\ 6^2 &= 36 \\ \end{align*} \][/tex]
4. Calculate the variance ([tex]\(s^2\)[/tex]):
Variance is the average of these squared deviations. Since this is a sample, we divide by [tex]\(n - 1\)[/tex] (where [tex]\(n\)[/tex] is the number of data points).
[tex]\[ s^2 = \frac{4 + 4 + 36 + 36}{4 - 1}=\frac{80}{3}\approx 26.67 \][/tex]
5. Calculate the standard deviation ([tex]\(s\)[/tex]):
Standard deviation is the square root of the variance.
[tex]\[ s = \sqrt{26.67} \approx 5.16 \][/tex]
So, the standard deviation for Omar's data is approximately [tex]\(5.2\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{5.2} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.