Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the gravitational force between the two masses, we will use Newton's law of universal gravitation, given by the formula:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( \vec{F} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( m_1 = 92.0 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 0.894 \, \text{kg} \)[/tex],
- [tex]\( r = 99.3 \, \text{m} \)[/tex],
we can substitute these values into the formula to find the gravitational force.
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times \frac{92.0 \, \text{kg} \times 0.894 \, \text{kg}}{(99.3 \, \text{m})^2} \][/tex]
First, compute the numerator:
[tex]\[ 92.0 \, \text{kg} \times 0.894 \, \text{kg} = 82.248 \, \text{kg}^2 \][/tex]
Next, compute the denominator:
[tex]\[ (99.3 \, \text{m})^2 = 9860.49 \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{82.248 \, \text{kg}^2}{9860.49 \, \text{m}^2} \approx 0.0083393935 \, \text{kg}^2 / \text{m}^2 \][/tex]
Finally, multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times 0.0083393935 \, \text{kg}^2 / \text{m}^2 \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
The result can be expressed in scientific notation by separating the mantissa and the exponent. Here, the mantissa is approximately [tex]\( 5.563558808943573 \)[/tex] and the exponent is [tex]\( -13 \)[/tex]:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
In conclusion, the gravitational force between the two masses is:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
Written in scientific notation, this is:
[tex]\[ \vec{F} = 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( \vec{F} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( m_1 = 92.0 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 0.894 \, \text{kg} \)[/tex],
- [tex]\( r = 99.3 \, \text{m} \)[/tex],
we can substitute these values into the formula to find the gravitational force.
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times \frac{92.0 \, \text{kg} \times 0.894 \, \text{kg}}{(99.3 \, \text{m})^2} \][/tex]
First, compute the numerator:
[tex]\[ 92.0 \, \text{kg} \times 0.894 \, \text{kg} = 82.248 \, \text{kg}^2 \][/tex]
Next, compute the denominator:
[tex]\[ (99.3 \, \text{m})^2 = 9860.49 \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{82.248 \, \text{kg}^2}{9860.49 \, \text{m}^2} \approx 0.0083393935 \, \text{kg}^2 / \text{m}^2 \][/tex]
Finally, multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times 0.0083393935 \, \text{kg}^2 / \text{m}^2 \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
The result can be expressed in scientific notation by separating the mantissa and the exponent. Here, the mantissa is approximately [tex]\( 5.563558808943573 \)[/tex] and the exponent is [tex]\( -13 \)[/tex]:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
In conclusion, the gravitational force between the two masses is:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
Written in scientific notation, this is:
[tex]\[ \vec{F} = 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.