Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the gravitational force between the two masses, we will use Newton's law of universal gravitation, given by the formula:
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( \vec{F} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( m_1 = 92.0 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 0.894 \, \text{kg} \)[/tex],
- [tex]\( r = 99.3 \, \text{m} \)[/tex],
we can substitute these values into the formula to find the gravitational force.
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times \frac{92.0 \, \text{kg} \times 0.894 \, \text{kg}}{(99.3 \, \text{m})^2} \][/tex]
First, compute the numerator:
[tex]\[ 92.0 \, \text{kg} \times 0.894 \, \text{kg} = 82.248 \, \text{kg}^2 \][/tex]
Next, compute the denominator:
[tex]\[ (99.3 \, \text{m})^2 = 9860.49 \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{82.248 \, \text{kg}^2}{9860.49 \, \text{m}^2} \approx 0.0083393935 \, \text{kg}^2 / \text{m}^2 \][/tex]
Finally, multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times 0.0083393935 \, \text{kg}^2 / \text{m}^2 \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
The result can be expressed in scientific notation by separating the mantissa and the exponent. Here, the mantissa is approximately [tex]\( 5.563558808943573 \)[/tex] and the exponent is [tex]\( -13 \)[/tex]:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
In conclusion, the gravitational force between the two masses is:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
Written in scientific notation, this is:
[tex]\[ \vec{F} = 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
[tex]\[ \vec{F} = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( \vec{F} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the first object,
- [tex]\( m_2 \)[/tex] is the mass of the second object,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Given the values:
- [tex]\( m_1 = 92.0 \, \text{kg} \)[/tex],
- [tex]\( m_2 = 0.894 \, \text{kg} \)[/tex],
- [tex]\( r = 99.3 \, \text{m} \)[/tex],
we can substitute these values into the formula to find the gravitational force.
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times \frac{92.0 \, \text{kg} \times 0.894 \, \text{kg}}{(99.3 \, \text{m})^2} \][/tex]
First, compute the numerator:
[tex]\[ 92.0 \, \text{kg} \times 0.894 \, \text{kg} = 82.248 \, \text{kg}^2 \][/tex]
Next, compute the denominator:
[tex]\[ (99.3 \, \text{m})^2 = 9860.49 \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{82.248 \, \text{kg}^2}{9860.49 \, \text{m}^2} \approx 0.0083393935 \, \text{kg}^2 / \text{m}^2 \][/tex]
Finally, multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \times 0.0083393935 \, \text{kg}^2 / \text{m}^2 \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
The result can be expressed in scientific notation by separating the mantissa and the exponent. Here, the mantissa is approximately [tex]\( 5.563558808943573 \)[/tex] and the exponent is [tex]\( -13 \)[/tex]:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
In conclusion, the gravitational force between the two masses is:
[tex]\[ \vec{F} \approx 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
Written in scientific notation, this is:
[tex]\[ \vec{F} = 5.563558808943573 \times 10^{-13} \, \text{N} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.