Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine in which of the following equations [tex]\( K_p = K_c \)[/tex], we have to understand the relationship between these two equilibrium constants. The relation between [tex]\( K_p \)[/tex] and [tex]\( K_c \)[/tex] is given by the equation:
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.