Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine in which of the following equations [tex]\( K_p = K_c \)[/tex], we have to understand the relationship between these two equilibrium constants. The relation between [tex]\( K_p \)[/tex] and [tex]\( K_c \)[/tex] is given by the equation:
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin,
- [tex]\( \Delta n \)[/tex] is the change in the number of moles of gas between the reactants and the products.
For [tex]\( K_p \)[/tex] to equal [tex]\( K_c \)[/tex], the exponent [tex]\( \Delta n \)[/tex] must be zero. This would make [tex]\( (RT)^{\Delta n} \)[/tex] equal to 1, since any number raised to the power of zero is 1.
Now, let's evaluate [tex]\( \Delta n \)[/tex] for each given equation:
### Option A: [tex]\( 2H_{2(g)} + C_2H_{2(g)} \rightleftharpoons C_2H_6(g) \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( C_2H_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 1 mole of [tex]\( C_2H_6(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 1 - 3 = -2 \)[/tex]
### Option B: [tex]\( 2NO_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_2_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( NO(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( NO_2(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
### Option C: [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
- Reactants: 1 mole of [tex]\( N_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 2 moles
- Products: 2 moles of [tex]\( NO(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 2 = 0 \)[/tex]
### Option D: [tex]\( 2H_2_{(g)} + O_2_{(g)} \rightleftharpoons 2H_2O_{(g)} \)[/tex]
- Reactants: 2 moles of [tex]\( H_2(g) \)[/tex] + 1 mole of [tex]\( O_2(g) \)[/tex] [tex]\( \rightarrow \)[/tex] Total = 3 moles
- Products: 2 moles of [tex]\( H_2O(g) \)[/tex]
- [tex]\( \Delta n \)[/tex]= moles of products - moles of reactants = [tex]\( 2 - 3 = -1 \)[/tex]
The correct answer is:
C. [tex]\( N_2_{(g)} + O_2_{(g)} \rightleftharpoons 2NO_{(g)} \)[/tex]
In this case, [tex]\( \Delta n = 0 \)[/tex], which means that [tex]\( (RT)^{\Delta n} = 1 \)[/tex]. Therefore, [tex]\( K_p = K_c \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.