Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the maximum height that the toy rocket reaches, we need to analyze the function that models its height over time: [tex]\( f(t) = -16t^2 + 48t \)[/tex].
This is a quadratic function of the form [tex]\( f(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 48 \)[/tex], and [tex]\( c = 0 \)[/tex]. Since the coefficient of [tex]\( t^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, this parabola opens downwards, meaning it has a maximum point.
The vertex of a parabolic function [tex]\( f(t) = at^2 + bt + c \)[/tex] is given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Let's find the time [tex]\( t \)[/tex] when the rocket reaches its maximum height by substituting [tex]\( a = -16 \)[/tex] and [tex]\( b = 48 \)[/tex] into the formula:
[tex]\[ t = -\frac{48}{2 \cdot (-16)} \][/tex]
[tex]\[ t = -\frac{48}{-32} \][/tex]
[tex]\[ t = 1.5 \][/tex]
Thus, the rocket reaches its maximum height at [tex]\( t = 1.5 \)[/tex] seconds.
To find the maximum height, we substitute [tex]\( t = 1.5 \)[/tex] back into the height function [tex]\( f(t) \)[/tex]:
[tex]\[ f(1.5) = -16(1.5)^2 + 48(1.5) \][/tex]
First, calculate [tex]\( 1.5^2 \)[/tex]:
[tex]\[ 1.5^2 = 2.25 \][/tex]
Then, substitute and evaluate:
[tex]\[ f(1.5) = -16 \cdot 2.25 + 48 \cdot 1.5 \][/tex]
[tex]\[ f(1.5) = -36 + 72 \][/tex]
[tex]\[ f(1.5) = 36 \][/tex]
Therefore, the maximum height that the toy rocket reaches is 36 feet.
So, the correct answer is:
[tex]\[ \boxed{36 \text{ ft}} \][/tex]
This is a quadratic function of the form [tex]\( f(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 48 \)[/tex], and [tex]\( c = 0 \)[/tex]. Since the coefficient of [tex]\( t^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, this parabola opens downwards, meaning it has a maximum point.
The vertex of a parabolic function [tex]\( f(t) = at^2 + bt + c \)[/tex] is given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Let's find the time [tex]\( t \)[/tex] when the rocket reaches its maximum height by substituting [tex]\( a = -16 \)[/tex] and [tex]\( b = 48 \)[/tex] into the formula:
[tex]\[ t = -\frac{48}{2 \cdot (-16)} \][/tex]
[tex]\[ t = -\frac{48}{-32} \][/tex]
[tex]\[ t = 1.5 \][/tex]
Thus, the rocket reaches its maximum height at [tex]\( t = 1.5 \)[/tex] seconds.
To find the maximum height, we substitute [tex]\( t = 1.5 \)[/tex] back into the height function [tex]\( f(t) \)[/tex]:
[tex]\[ f(1.5) = -16(1.5)^2 + 48(1.5) \][/tex]
First, calculate [tex]\( 1.5^2 \)[/tex]:
[tex]\[ 1.5^2 = 2.25 \][/tex]
Then, substitute and evaluate:
[tex]\[ f(1.5) = -16 \cdot 2.25 + 48 \cdot 1.5 \][/tex]
[tex]\[ f(1.5) = -36 + 72 \][/tex]
[tex]\[ f(1.5) = 36 \][/tex]
Therefore, the maximum height that the toy rocket reaches is 36 feet.
So, the correct answer is:
[tex]\[ \boxed{36 \text{ ft}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.