Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the maximum height that the toy rocket reaches, we need to analyze the function that models its height over time: [tex]\( f(t) = -16t^2 + 48t \)[/tex].
This is a quadratic function of the form [tex]\( f(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 48 \)[/tex], and [tex]\( c = 0 \)[/tex]. Since the coefficient of [tex]\( t^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, this parabola opens downwards, meaning it has a maximum point.
The vertex of a parabolic function [tex]\( f(t) = at^2 + bt + c \)[/tex] is given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Let's find the time [tex]\( t \)[/tex] when the rocket reaches its maximum height by substituting [tex]\( a = -16 \)[/tex] and [tex]\( b = 48 \)[/tex] into the formula:
[tex]\[ t = -\frac{48}{2 \cdot (-16)} \][/tex]
[tex]\[ t = -\frac{48}{-32} \][/tex]
[tex]\[ t = 1.5 \][/tex]
Thus, the rocket reaches its maximum height at [tex]\( t = 1.5 \)[/tex] seconds.
To find the maximum height, we substitute [tex]\( t = 1.5 \)[/tex] back into the height function [tex]\( f(t) \)[/tex]:
[tex]\[ f(1.5) = -16(1.5)^2 + 48(1.5) \][/tex]
First, calculate [tex]\( 1.5^2 \)[/tex]:
[tex]\[ 1.5^2 = 2.25 \][/tex]
Then, substitute and evaluate:
[tex]\[ f(1.5) = -16 \cdot 2.25 + 48 \cdot 1.5 \][/tex]
[tex]\[ f(1.5) = -36 + 72 \][/tex]
[tex]\[ f(1.5) = 36 \][/tex]
Therefore, the maximum height that the toy rocket reaches is 36 feet.
So, the correct answer is:
[tex]\[ \boxed{36 \text{ ft}} \][/tex]
This is a quadratic function of the form [tex]\( f(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 48 \)[/tex], and [tex]\( c = 0 \)[/tex]. Since the coefficient of [tex]\( t^2 \)[/tex] (which is [tex]\( a \)[/tex]) is negative, this parabola opens downwards, meaning it has a maximum point.
The vertex of a parabolic function [tex]\( f(t) = at^2 + bt + c \)[/tex] is given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Let's find the time [tex]\( t \)[/tex] when the rocket reaches its maximum height by substituting [tex]\( a = -16 \)[/tex] and [tex]\( b = 48 \)[/tex] into the formula:
[tex]\[ t = -\frac{48}{2 \cdot (-16)} \][/tex]
[tex]\[ t = -\frac{48}{-32} \][/tex]
[tex]\[ t = 1.5 \][/tex]
Thus, the rocket reaches its maximum height at [tex]\( t = 1.5 \)[/tex] seconds.
To find the maximum height, we substitute [tex]\( t = 1.5 \)[/tex] back into the height function [tex]\( f(t) \)[/tex]:
[tex]\[ f(1.5) = -16(1.5)^2 + 48(1.5) \][/tex]
First, calculate [tex]\( 1.5^2 \)[/tex]:
[tex]\[ 1.5^2 = 2.25 \][/tex]
Then, substitute and evaluate:
[tex]\[ f(1.5) = -16 \cdot 2.25 + 48 \cdot 1.5 \][/tex]
[tex]\[ f(1.5) = -36 + 72 \][/tex]
[tex]\[ f(1.5) = 36 \][/tex]
Therefore, the maximum height that the toy rocket reaches is 36 feet.
So, the correct answer is:
[tex]\[ \boxed{36 \text{ ft}} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.