Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the length of the third side of the triangle when the lengths of two sides and the included angle are given, we can use the Law of Cosines. The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the given sides, [tex]\( C \)[/tex] is the included angle, and [tex]\( c \)[/tex] is the length of the third side. Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( C = 60^{\circ} \)[/tex]
First, we convert the angle [tex]\( C \)[/tex] to radians (which necessitates knowing that [tex]\( 60^{\circ} \)[/tex] in radians is [tex]\(\frac{\pi}{3}\)[/tex]). The cosine of [tex]\( 60^{\circ} \)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Now, applying the Law of Cosines:
[tex]\[ c^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(60^{\circ}) \][/tex]
We substitute the given values and simplify:
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot 0.5 \][/tex]
[tex]\[ c^2 = 13 - 6 \][/tex]
[tex]\[ c^2 = 7 \][/tex]
To find [tex]\( c \)[/tex], we take the square root of [tex]\( c^2 \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Therefore, the length of the third side is:
[tex]\[ \boxed{\sqrt{7}} \][/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the given sides, [tex]\( C \)[/tex] is the included angle, and [tex]\( c \)[/tex] is the length of the third side. Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( C = 60^{\circ} \)[/tex]
First, we convert the angle [tex]\( C \)[/tex] to radians (which necessitates knowing that [tex]\( 60^{\circ} \)[/tex] in radians is [tex]\(\frac{\pi}{3}\)[/tex]). The cosine of [tex]\( 60^{\circ} \)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Now, applying the Law of Cosines:
[tex]\[ c^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(60^{\circ}) \][/tex]
We substitute the given values and simplify:
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot 0.5 \][/tex]
[tex]\[ c^2 = 13 - 6 \][/tex]
[tex]\[ c^2 = 7 \][/tex]
To find [tex]\( c \)[/tex], we take the square root of [tex]\( c^2 \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Therefore, the length of the third side is:
[tex]\[ \boxed{\sqrt{7}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.