At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the length of the third side of the triangle when the lengths of two sides and the included angle are given, we can use the Law of Cosines. The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the given sides, [tex]\( C \)[/tex] is the included angle, and [tex]\( c \)[/tex] is the length of the third side. Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( C = 60^{\circ} \)[/tex]
First, we convert the angle [tex]\( C \)[/tex] to radians (which necessitates knowing that [tex]\( 60^{\circ} \)[/tex] in radians is [tex]\(\frac{\pi}{3}\)[/tex]). The cosine of [tex]\( 60^{\circ} \)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Now, applying the Law of Cosines:
[tex]\[ c^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(60^{\circ}) \][/tex]
We substitute the given values and simplify:
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot 0.5 \][/tex]
[tex]\[ c^2 = 13 - 6 \][/tex]
[tex]\[ c^2 = 7 \][/tex]
To find [tex]\( c \)[/tex], we take the square root of [tex]\( c^2 \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Therefore, the length of the third side is:
[tex]\[ \boxed{\sqrt{7}} \][/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the given sides, [tex]\( C \)[/tex] is the included angle, and [tex]\( c \)[/tex] is the length of the third side. Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( C = 60^{\circ} \)[/tex]
First, we convert the angle [tex]\( C \)[/tex] to radians (which necessitates knowing that [tex]\( 60^{\circ} \)[/tex] in radians is [tex]\(\frac{\pi}{3}\)[/tex]). The cosine of [tex]\( 60^{\circ} \)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Now, applying the Law of Cosines:
[tex]\[ c^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(60^{\circ}) \][/tex]
We substitute the given values and simplify:
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot 0.5 \][/tex]
[tex]\[ c^2 = 13 - 6 \][/tex]
[tex]\[ c^2 = 7 \][/tex]
To find [tex]\( c \)[/tex], we take the square root of [tex]\( c^2 \)[/tex]:
[tex]\[ c = \sqrt{7} \][/tex]
Therefore, the length of the third side is:
[tex]\[ \boxed{\sqrt{7}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.