Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Suppose a triangle has two sides of length 2 and 3 and that the angle between these two sides is [tex]$60^{\circ}$[/tex]. What is the length of the third side of the triangle?

A. [tex]\sqrt{7}[/tex]
B. 2
C. [tex]2 \sqrt{3}[/tex]
D. [tex]\sqrt{3}[/tex]


Sagot :

To find the length of the third side of the triangle when the lengths of two sides and the included angle are given, we can use the Law of Cosines. The Law of Cosines states:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]

where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the given sides, [tex]\( C \)[/tex] is the included angle, and [tex]\( c \)[/tex] is the length of the third side. Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( C = 60^{\circ} \)[/tex]

First, we convert the angle [tex]\( C \)[/tex] to radians (which necessitates knowing that [tex]\( 60^{\circ} \)[/tex] in radians is [tex]\(\frac{\pi}{3}\)[/tex]). The cosine of [tex]\( 60^{\circ} \)[/tex] is [tex]\(\frac{1}{2}\)[/tex].

Now, applying the Law of Cosines:

[tex]\[ c^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(60^{\circ}) \][/tex]

We substitute the given values and simplify:

[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 4 + 9 - 2 \cdot 2 \cdot 3 \cdot 0.5 \][/tex]
[tex]\[ c^2 = 13 - 6 \][/tex]
[tex]\[ c^2 = 7 \][/tex]

To find [tex]\( c \)[/tex], we take the square root of [tex]\( c^2 \)[/tex]:

[tex]\[ c = \sqrt{7} \][/tex]

Therefore, the length of the third side is:

[tex]\[ \boxed{\sqrt{7}} \][/tex]