At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's solve the problem step-by-step.
We are given:
- Distance between the masses, [tex]\( r = 5.60 \)[/tex] meters
- Mass 1, [tex]\( m_1 = 4.17 \)[/tex] kilograms
- Mass 2, [tex]\( m_2 = 3.29 \)[/tex] kilograms
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \)[/tex] N [tex]\(\cdot\)[/tex] m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]
We need to find the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses using the formula:
[tex]\[ \vec{F} = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Step-by-step solution:
1. Plug in the known values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.17 \cdot 3.29}{(5.60)^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ 4.17 \cdot 3.29 = 13.7193 \][/tex]
3. Calculate the square of the distance:
[tex]\[ (5.60)^2 = 31.36 \][/tex]
4. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{13.7193}{31.36} = 0.4375710208530831 \][/tex]
5. Multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot 0.4375710208530831 = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
So the gravitational force is:
[tex]\[ \vec{F} = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
To express the force in the format [tex]\([a] \times 10^{[b]} \text{ N}\)[/tex]:
- [tex]\( a = 0.2917976116071429 \)[/tex]
- [tex]\( b = -10 \)[/tex]
Therefore, the gravitational force between the two masses is:
[tex]\[ \vec{F} = 0.2917976116071429 \times 10^{-10} \text{ N} \][/tex]
We are given:
- Distance between the masses, [tex]\( r = 5.60 \)[/tex] meters
- Mass 1, [tex]\( m_1 = 4.17 \)[/tex] kilograms
- Mass 2, [tex]\( m_2 = 3.29 \)[/tex] kilograms
- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \)[/tex] N [tex]\(\cdot\)[/tex] m[tex]\(^2\)[/tex] / kg[tex]\(^2\)[/tex]
We need to find the gravitational force [tex]\( \vec{F} \)[/tex] between the two masses using the formula:
[tex]\[ \vec{F} = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Step-by-step solution:
1. Plug in the known values into the formula:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot \frac{4.17 \cdot 3.29}{(5.60)^2} \][/tex]
2. Calculate the product of the masses:
[tex]\[ 4.17 \cdot 3.29 = 13.7193 \][/tex]
3. Calculate the square of the distance:
[tex]\[ (5.60)^2 = 31.36 \][/tex]
4. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{13.7193}{31.36} = 0.4375710208530831 \][/tex]
5. Multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ \vec{F} = 6.67 \times 10^{-11} \cdot 0.4375710208530831 = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
So the gravitational force is:
[tex]\[ \vec{F} = 2.917976116071429 \times 10^{-11} \text{ N} \][/tex]
To express the force in the format [tex]\([a] \times 10^{[b]} \text{ N}\)[/tex]:
- [tex]\( a = 0.2917976116071429 \)[/tex]
- [tex]\( b = -10 \)[/tex]
Therefore, the gravitational force between the two masses is:
[tex]\[ \vec{F} = 0.2917976116071429 \times 10^{-10} \text{ N} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.