Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the force exerted on a charge moving through a magnetic field, we can use the formula for the magnetic force, which is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge, and
- [tex]\( B \)[/tex] is the magnetic field strength.
Given the parameters in the question:
- [tex]\( q = 2.5 \mu C = 2.5 \times 10^{-6} \)[/tex] Coulombs,
- [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla,
- [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second.
First, let's plug in the values into the formula to find the force [tex]\( F \)[/tex]:
[tex]\[ F = (2.5 \times 10^{-6} \, \text{C}) \times (5.0 \times 10^3 \, \text{m/s}) \times (3.0 \times 10^2 \, \text{T}) \][/tex]
Now, perform the multiplication step by step to keep track of the significant figures and ensure correct handling of powers of ten:
1. Multiply the charge and velocity:
[tex]\[ 2.5 \times 10^{-6} \, \text{C} \times 5.0 \times 10^3 \, \text{m/s} = 12.5 \times 10^{-3} \, \text{C} \cdot \text{m/s} = 1.25 \times 10^{-2} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field strength:
[tex]\[ 1.25 \times 10^{-2} \, \text{C} \cdot \text{m/s} \times 3.0 \times 10^2 \, \text{T} = 3.75 \times 10^0 \, \text{N} = 3.75 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] exerted on the charge is approximately 3.75 N, which rounds up to the nearest significant figure given in the multi-choice options.
Thus, the nearest choice closest to our computed answer is:
[tex]\[ \boxed{3.8 \text{ N}} \][/tex]
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge, and
- [tex]\( B \)[/tex] is the magnetic field strength.
Given the parameters in the question:
- [tex]\( q = 2.5 \mu C = 2.5 \times 10^{-6} \)[/tex] Coulombs,
- [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla,
- [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second.
First, let's plug in the values into the formula to find the force [tex]\( F \)[/tex]:
[tex]\[ F = (2.5 \times 10^{-6} \, \text{C}) \times (5.0 \times 10^3 \, \text{m/s}) \times (3.0 \times 10^2 \, \text{T}) \][/tex]
Now, perform the multiplication step by step to keep track of the significant figures and ensure correct handling of powers of ten:
1. Multiply the charge and velocity:
[tex]\[ 2.5 \times 10^{-6} \, \text{C} \times 5.0 \times 10^3 \, \text{m/s} = 12.5 \times 10^{-3} \, \text{C} \cdot \text{m/s} = 1.25 \times 10^{-2} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field strength:
[tex]\[ 1.25 \times 10^{-2} \, \text{C} \cdot \text{m/s} \times 3.0 \times 10^2 \, \text{T} = 3.75 \times 10^0 \, \text{N} = 3.75 \, \text{N} \][/tex]
So, the force [tex]\( F \)[/tex] exerted on the charge is approximately 3.75 N, which rounds up to the nearest significant figure given in the multi-choice options.
Thus, the nearest choice closest to our computed answer is:
[tex]\[ \boxed{3.8 \text{ N}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.