Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Given the information that the fifth term of the geometric sequence is 781.25 and each term is [tex]\(\frac{1}{5}\)[/tex] of the following term, we need to determine which recursive formula represents this situation.
First, let's recall the general form of a geometric sequence's terms:
[tex]\[ a_n = a_1 \cdot r^{(n-1)}, \][/tex]
where [tex]\(a_1\)[/tex] is the first term, [tex]\(r\)[/tex] is the common ratio, and [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term.
In this problem, the fifth term [tex]\(a_5\)[/tex] is 781.25 and the common ratio [tex]\(r\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
### Step 1: Calculate the first term [tex]\(a_1\)[/tex]
Using the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_5 = a_1 \cdot \left(\frac{1}{5}\right)^{4}. \][/tex]
Given [tex]\(a_5 = 781.25\)[/tex]:
[tex]\[ 781.25 = a_1 \cdot \left(\frac{1}{5}\right)^{4}. \][/tex]
Solving for [tex]\(a_1\)[/tex]:
[tex]\[ 781.25 = a_1 \cdot \left(\frac{1}{625}\right), \][/tex]
[tex]\[ 781.25 = a_1 \cdot 0.0016, \][/tex]
[tex]\[ a_1 = \frac{781.25}{0.0016}. \][/tex]
[tex]\[ a_1 = 488281.25. \][/tex]
### Step 2: Identify the correct recursive formula
Now that we have the first term [tex]\(a_1 = 488281.25\)[/tex], we can check which of the given recursive formulas matches:
1. [tex]\(a_n = 5a_{n-1} ; a_1 = 1.25\)[/tex]
2. [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 488281.25\)[/tex]
3. [tex]\(a_n = 5a_{n-1} ; a_1 = 488281.25\)[/tex]
4. [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 1.25\)[/tex]
Given the first term [tex]\(a_1 = 488281.25\)[/tex] and the ratio [tex]\( \frac{1}{5} \)[/tex]:
- [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 488281.25\)[/tex]
matches perfectly since:
- [tex]\(a_2 = \frac{1}{5} \cdot 488281.25 = 97656.25,\)[/tex]
- [tex]\(a_3 = \frac{1}{5} \cdot 97656.25 = 19531.25,\)[/tex]
- [tex]\(a_4 = \frac{1}{5} \cdot 19531.25 = 3906.25,\)[/tex]
- [tex]\(a_5 = \frac{1}{5} \cdot 3906.25 = 781.25.\)[/tex]
Thus, the correct recursive formula representing the situation is:
[tex]\[ a_n = \frac{1}{5} a_{n-1} ; a_1 = 488281.25. \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{2} \][/tex]
First, let's recall the general form of a geometric sequence's terms:
[tex]\[ a_n = a_1 \cdot r^{(n-1)}, \][/tex]
where [tex]\(a_1\)[/tex] is the first term, [tex]\(r\)[/tex] is the common ratio, and [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term.
In this problem, the fifth term [tex]\(a_5\)[/tex] is 781.25 and the common ratio [tex]\(r\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
### Step 1: Calculate the first term [tex]\(a_1\)[/tex]
Using the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_5 = a_1 \cdot \left(\frac{1}{5}\right)^{4}. \][/tex]
Given [tex]\(a_5 = 781.25\)[/tex]:
[tex]\[ 781.25 = a_1 \cdot \left(\frac{1}{5}\right)^{4}. \][/tex]
Solving for [tex]\(a_1\)[/tex]:
[tex]\[ 781.25 = a_1 \cdot \left(\frac{1}{625}\right), \][/tex]
[tex]\[ 781.25 = a_1 \cdot 0.0016, \][/tex]
[tex]\[ a_1 = \frac{781.25}{0.0016}. \][/tex]
[tex]\[ a_1 = 488281.25. \][/tex]
### Step 2: Identify the correct recursive formula
Now that we have the first term [tex]\(a_1 = 488281.25\)[/tex], we can check which of the given recursive formulas matches:
1. [tex]\(a_n = 5a_{n-1} ; a_1 = 1.25\)[/tex]
2. [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 488281.25\)[/tex]
3. [tex]\(a_n = 5a_{n-1} ; a_1 = 488281.25\)[/tex]
4. [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 1.25\)[/tex]
Given the first term [tex]\(a_1 = 488281.25\)[/tex] and the ratio [tex]\( \frac{1}{5} \)[/tex]:
- [tex]\(a_n = \frac{1}{5}a_{n-1} ; a_1 = 488281.25\)[/tex]
matches perfectly since:
- [tex]\(a_2 = \frac{1}{5} \cdot 488281.25 = 97656.25,\)[/tex]
- [tex]\(a_3 = \frac{1}{5} \cdot 97656.25 = 19531.25,\)[/tex]
- [tex]\(a_4 = \frac{1}{5} \cdot 19531.25 = 3906.25,\)[/tex]
- [tex]\(a_5 = \frac{1}{5} \cdot 3906.25 = 781.25.\)[/tex]
Thus, the correct recursive formula representing the situation is:
[tex]\[ a_n = \frac{1}{5} a_{n-1} ; a_1 = 488281.25. \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{2} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.