Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem [tex]\(\frac{x^2 + 4x + 7}{x + 3}\)[/tex] using long division, follow these steps:
1. Setup the long division:
[tex]\[ \begin{array}{r|rr} x+3 & x^2+4x+7 \\ \end{array} \][/tex]
2. Divide the first term:
- Take the leading term of the dividend [tex]\(x^2\)[/tex] and divide it by the leading term of the divisor [tex]\(x\)[/tex].
- [tex]\(\frac{x^2}{x} = x\)[/tex]
Write [tex]\(x\)[/tex] above the division bar.
[tex]\[ \begin{array}{r|rr} & x \\ x+3 & x^2+4x+7 \\ \end{array} \][/tex]
3. Multiply and subtract:
- Multiply [tex]\(x\)[/tex] by the divisor [tex]\(x + 3\)[/tex]:
[tex]\[ x \cdot (x + 3) = x^2 + 3x \][/tex]
- Subtract this result from the original dividend:
[tex]\[ (x^2 + 4x + 7) - (x^2 + 3x) = (x^2 - x^2) + (4x - 3x) + 7 = x + 7 \][/tex]
Update the division process:
[tex]\[ \begin{array}{r|rr} & x \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ \end{array} \][/tex]
4. Repeat the process:
- Now, take the leading term of the new polynomial [tex]\(x\)[/tex] and divide it by the leading term of the divisor [tex]\(x\)[/tex].
- [tex]\(\frac{x}{x} = 1\)[/tex]
Write [tex]\(1\)[/tex] above the division bar next to [tex]\(x\)[/tex].
[tex]\[ \begin{array}{r|rr} & x+1 \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ \end{array} \][/tex]
5. Multiply and subtract again:
- Multiply [tex]\(1\)[/tex] by the divisor [tex]\(x + 3\)[/tex]:
[tex]\[ 1 \cdot (x + 3) = x + 3 \][/tex]
- Subtract this result from the current polynomial:
[tex]\[ (x + 7) - (x + 3) = (x - x) + (7 - 3) = 4 \][/tex]
Update the division process:
[tex]\[ \begin{array}{r|rr} & x+1 \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ & x+3 \\ \hline & 4 \\ \end{array} \][/tex]
6. Conclusion:
- The quotient is the polynomial written above the division bar, which is [tex]\(x + 1\)[/tex].
- The remainder is the polynomial left over after the last subtraction, which is [tex]\(4\)[/tex].
Thus, the quotient is [tex]\(\boxed{x + 1}\)[/tex] and the remainder is [tex]\(\boxed{4}\)[/tex].
1. Setup the long division:
[tex]\[ \begin{array}{r|rr} x+3 & x^2+4x+7 \\ \end{array} \][/tex]
2. Divide the first term:
- Take the leading term of the dividend [tex]\(x^2\)[/tex] and divide it by the leading term of the divisor [tex]\(x\)[/tex].
- [tex]\(\frac{x^2}{x} = x\)[/tex]
Write [tex]\(x\)[/tex] above the division bar.
[tex]\[ \begin{array}{r|rr} & x \\ x+3 & x^2+4x+7 \\ \end{array} \][/tex]
3. Multiply and subtract:
- Multiply [tex]\(x\)[/tex] by the divisor [tex]\(x + 3\)[/tex]:
[tex]\[ x \cdot (x + 3) = x^2 + 3x \][/tex]
- Subtract this result from the original dividend:
[tex]\[ (x^2 + 4x + 7) - (x^2 + 3x) = (x^2 - x^2) + (4x - 3x) + 7 = x + 7 \][/tex]
Update the division process:
[tex]\[ \begin{array}{r|rr} & x \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ \end{array} \][/tex]
4. Repeat the process:
- Now, take the leading term of the new polynomial [tex]\(x\)[/tex] and divide it by the leading term of the divisor [tex]\(x\)[/tex].
- [tex]\(\frac{x}{x} = 1\)[/tex]
Write [tex]\(1\)[/tex] above the division bar next to [tex]\(x\)[/tex].
[tex]\[ \begin{array}{r|rr} & x+1 \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ \end{array} \][/tex]
5. Multiply and subtract again:
- Multiply [tex]\(1\)[/tex] by the divisor [tex]\(x + 3\)[/tex]:
[tex]\[ 1 \cdot (x + 3) = x + 3 \][/tex]
- Subtract this result from the current polynomial:
[tex]\[ (x + 7) - (x + 3) = (x - x) + (7 - 3) = 4 \][/tex]
Update the division process:
[tex]\[ \begin{array}{r|rr} & x+1 \\ x+3 & x^2+4x+7 \\ \hline & x+7 \\ & x+3 \\ \hline & 4 \\ \end{array} \][/tex]
6. Conclusion:
- The quotient is the polynomial written above the division bar, which is [tex]\(x + 1\)[/tex].
- The remainder is the polynomial left over after the last subtraction, which is [tex]\(4\)[/tex].
Thus, the quotient is [tex]\(\boxed{x + 1}\)[/tex] and the remainder is [tex]\(\boxed{4}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.