Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine if each linear system has a unique solution, we can use the determinant of the coefficient matrix for each system. If the determinant is non-zero, the system has a unique solution. If the determinant is zero, the system does not have a unique solution.
Let's go through each system step by step.
### First System
[tex]\[ \begin{array}{l} x + 3y = 4 \\ 3x - y = 5 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} \][/tex]
The determinant of this 2x2 matrix is calculated as:
[tex]\[ \text{det} = (1 \cdot -1) - (3 \cdot 3) = -1 - 9 = -10 \][/tex]
Since the determinant [tex]\(\text{det} = -10\)[/tex] is non-zero, the system has a unique solution.
### Second System
[tex]\[ \begin{array}{l} x + 2y - z = 8 \\ x - y + 2z = 0 \\ 2x - 3y + z = 1 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -3 & 1 \end{pmatrix} \][/tex]
The determinant of this 3x3 matrix is calculated as:
[tex]\[ \text{det} = \begin{vmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -3 & 1 \end{vmatrix} = 12 \][/tex]
Since the determinant [tex]\(\text{det} = 12\)[/tex] is non-zero, the system has a unique solution.
### Third System
[tex]\[ \begin{array}{l} x + 3y + z = 4 \\ 2x + 6y + 2z = 5 \\ x + y + z = 0 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 3 & 1 \\ 2 & 6 & 2 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
The determinant of this 3x3 matrix is calculated as:
[tex]\[ \text{det} = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 6 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 0 \][/tex]
Since the determinant [tex]\(\text{det} = 0\)[/tex] is zero, the system does not have a unique solution.
### Summary
- The first system has a unique solution (det = -10).
- The second system has a unique solution (det = 12).
- The third system does not have a unique solution (det = 0).
Let's go through each system step by step.
### First System
[tex]\[ \begin{array}{l} x + 3y = 4 \\ 3x - y = 5 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} \][/tex]
The determinant of this 2x2 matrix is calculated as:
[tex]\[ \text{det} = (1 \cdot -1) - (3 \cdot 3) = -1 - 9 = -10 \][/tex]
Since the determinant [tex]\(\text{det} = -10\)[/tex] is non-zero, the system has a unique solution.
### Second System
[tex]\[ \begin{array}{l} x + 2y - z = 8 \\ x - y + 2z = 0 \\ 2x - 3y + z = 1 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -3 & 1 \end{pmatrix} \][/tex]
The determinant of this 3x3 matrix is calculated as:
[tex]\[ \text{det} = \begin{vmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -3 & 1 \end{vmatrix} = 12 \][/tex]
Since the determinant [tex]\(\text{det} = 12\)[/tex] is non-zero, the system has a unique solution.
### Third System
[tex]\[ \begin{array}{l} x + 3y + z = 4 \\ 2x + 6y + 2z = 5 \\ x + y + z = 0 \end{array} \][/tex]
The coefficient matrix for this system is:
[tex]\[ \begin{pmatrix} 1 & 3 & 1 \\ 2 & 6 & 2 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
The determinant of this 3x3 matrix is calculated as:
[tex]\[ \text{det} = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 6 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 0 \][/tex]
Since the determinant [tex]\(\text{det} = 0\)[/tex] is zero, the system does not have a unique solution.
### Summary
- The first system has a unique solution (det = -10).
- The second system has a unique solution (det = 12).
- The third system does not have a unique solution (det = 0).
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.