Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the absolute value inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex], we need to isolate the absolute value expression and then split it into two separate inequalities.
### Step-by-Step Solution
1. Remove the fraction by multiplying both sides by 4:
[tex]\[ \frac{|x + 9|}{4} > 2 \][/tex]
Multiply both sides by 4:
[tex]\[ |x + 9| > 8 \][/tex]
2. Set up the two possible inequalities that arise from the absolute value expression:
The absolute value inequality [tex]\( |A| > B \)[/tex] means that [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex]. Therefore, we have:
[tex]\[ x + 9 > 8 \quad \text{or} \quad x + 9 < -8 \][/tex]
3. Solve each inequality separately:
- For [tex]\( x + 9 > 8 \)[/tex]:
[tex]\[ x > 8 - 9 \][/tex]
[tex]\[ x > -1 \][/tex]
- For [tex]\( x + 9 < -8 \)[/tex]:
[tex]\[ x < -8 - 9 \][/tex]
[tex]\[ x < -17 \][/tex]
### Final Solution
Combining the solutions from both parts, we have:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
### Conclusion
The solution to the inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex] is:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
These solutions indicate that [tex]\( x \)[/tex] can be any number greater than [tex]\(-1\)[/tex] or any number less than [tex]\(-17\)[/tex]. Remember, there is no overlap between these two ranges, as they are mutually exclusive.
### Step-by-Step Solution
1. Remove the fraction by multiplying both sides by 4:
[tex]\[ \frac{|x + 9|}{4} > 2 \][/tex]
Multiply both sides by 4:
[tex]\[ |x + 9| > 8 \][/tex]
2. Set up the two possible inequalities that arise from the absolute value expression:
The absolute value inequality [tex]\( |A| > B \)[/tex] means that [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex]. Therefore, we have:
[tex]\[ x + 9 > 8 \quad \text{or} \quad x + 9 < -8 \][/tex]
3. Solve each inequality separately:
- For [tex]\( x + 9 > 8 \)[/tex]:
[tex]\[ x > 8 - 9 \][/tex]
[tex]\[ x > -1 \][/tex]
- For [tex]\( x + 9 < -8 \)[/tex]:
[tex]\[ x < -8 - 9 \][/tex]
[tex]\[ x < -17 \][/tex]
### Final Solution
Combining the solutions from both parts, we have:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
### Conclusion
The solution to the inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex] is:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
These solutions indicate that [tex]\( x \)[/tex] can be any number greater than [tex]\(-1\)[/tex] or any number less than [tex]\(-17\)[/tex]. Remember, there is no overlap between these two ranges, as they are mutually exclusive.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.