Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the absolute value inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex], we need to isolate the absolute value expression and then split it into two separate inequalities.
### Step-by-Step Solution
1. Remove the fraction by multiplying both sides by 4:
[tex]\[ \frac{|x + 9|}{4} > 2 \][/tex]
Multiply both sides by 4:
[tex]\[ |x + 9| > 8 \][/tex]
2. Set up the two possible inequalities that arise from the absolute value expression:
The absolute value inequality [tex]\( |A| > B \)[/tex] means that [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex]. Therefore, we have:
[tex]\[ x + 9 > 8 \quad \text{or} \quad x + 9 < -8 \][/tex]
3. Solve each inequality separately:
- For [tex]\( x + 9 > 8 \)[/tex]:
[tex]\[ x > 8 - 9 \][/tex]
[tex]\[ x > -1 \][/tex]
- For [tex]\( x + 9 < -8 \)[/tex]:
[tex]\[ x < -8 - 9 \][/tex]
[tex]\[ x < -17 \][/tex]
### Final Solution
Combining the solutions from both parts, we have:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
### Conclusion
The solution to the inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex] is:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
These solutions indicate that [tex]\( x \)[/tex] can be any number greater than [tex]\(-1\)[/tex] or any number less than [tex]\(-17\)[/tex]. Remember, there is no overlap between these two ranges, as they are mutually exclusive.
### Step-by-Step Solution
1. Remove the fraction by multiplying both sides by 4:
[tex]\[ \frac{|x + 9|}{4} > 2 \][/tex]
Multiply both sides by 4:
[tex]\[ |x + 9| > 8 \][/tex]
2. Set up the two possible inequalities that arise from the absolute value expression:
The absolute value inequality [tex]\( |A| > B \)[/tex] means that [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex]. Therefore, we have:
[tex]\[ x + 9 > 8 \quad \text{or} \quad x + 9 < -8 \][/tex]
3. Solve each inequality separately:
- For [tex]\( x + 9 > 8 \)[/tex]:
[tex]\[ x > 8 - 9 \][/tex]
[tex]\[ x > -1 \][/tex]
- For [tex]\( x + 9 < -8 \)[/tex]:
[tex]\[ x < -8 - 9 \][/tex]
[tex]\[ x < -17 \][/tex]
### Final Solution
Combining the solutions from both parts, we have:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
### Conclusion
The solution to the inequality [tex]\(\frac{|x + 9|}{4} > 2\)[/tex] is:
[tex]\[ x > -1 \quad \text{or} \quad x < -17 \][/tex]
These solutions indicate that [tex]\( x \)[/tex] can be any number greater than [tex]\(-1\)[/tex] or any number less than [tex]\(-17\)[/tex]. Remember, there is no overlap between these two ranges, as they are mutually exclusive.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.