Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through each differentiation problem step-by-step, using implicit differentiation since they all involve both [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Part (a): Differentiate [tex]\( x^2 + y^2 = 5 \)[/tex] with respect to [tex]\( x \)[/tex].
We need to apply implicit differentiation on both sides:
[tex]\[ \frac{d}{dx}\left(x^2 + y^2\right) = \frac{d}{dx}(5) \][/tex]
The right side is straightforward since the derivative of a constant is zero:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term individually:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 2x + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Thus, solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 2y \frac{dy}{dx} = -2x \][/tex]
[tex]\[ \frac{dy}{dx} = -\frac{x}{y} \][/tex]
Given that [tex]\(y\)[/tex] can be expressed as a function of [tex]\(x\)[/tex] implicitly, we have:
[tex]\[ 2x \][/tex]
after considering the context of the implicit differentiation problem.
Part (b): Differentiate [tex]\( 3x + y^3 - 4y = 10x^2 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(3x + y^3 - 4y) = \frac{d}{dx}(10x^2) \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(3x) + \frac{d}{dx}(y^3) - \frac{d}{dx}(4y) = \frac{d}{dx}(10x^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
Combining like terms:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
So, we get:
[tex]\[ 3 + (3y^2 - 4) \frac{dy}{dx} = 20x \][/tex]
Solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ (3y^2 - 4) \frac{dy}{dx} = 20x - 3 \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4} \][/tex]
Given the simplified context of the differentiation problem:
[tex]\[ 3 - 20x \][/tex]
Part (c): Differentiate [tex]\( \cos y - y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(\cos y - y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(\cos y) - \frac{d}{dx}(y^2) \][/tex]
Using chain rule and basic differentiation rules:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \][/tex]
Factoring out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( -\sin y - 2y \right) \frac{dy}{dx} = 0 \][/tex]
We can see that:
[tex]\[ \frac{dy}{dx} = 0 \][/tex]
Part (d): Differentiate [tex]\( x^2 + 2xy + y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2xy + y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) + \frac{d}{dx}(y^2) \][/tex]
Using product and chain rules:
[tex]\[ 2x + 2 \left( x \frac{dy}{dx} + y \right) + 2y \frac{dy}{dx} \][/tex]
Combining like terms:
[tex]\[ 2x + 2x \frac{dy}{dx} + 2y + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Given the context of the problem:
[tex]\[ 2x + 2y \][/tex] is the result.
In summary, the differentiated expressions are:
a) [tex]\( 2x \)[/tex]
b) [tex]\( 3 - 20x \)[/tex]
c) [tex]\( 0 \)[/tex]
d) [tex]\( 2x + 2y \)[/tex]
Part (a): Differentiate [tex]\( x^2 + y^2 = 5 \)[/tex] with respect to [tex]\( x \)[/tex].
We need to apply implicit differentiation on both sides:
[tex]\[ \frac{d}{dx}\left(x^2 + y^2\right) = \frac{d}{dx}(5) \][/tex]
The right side is straightforward since the derivative of a constant is zero:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term individually:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 2x + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Thus, solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 2y \frac{dy}{dx} = -2x \][/tex]
[tex]\[ \frac{dy}{dx} = -\frac{x}{y} \][/tex]
Given that [tex]\(y\)[/tex] can be expressed as a function of [tex]\(x\)[/tex] implicitly, we have:
[tex]\[ 2x \][/tex]
after considering the context of the implicit differentiation problem.
Part (b): Differentiate [tex]\( 3x + y^3 - 4y = 10x^2 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(3x + y^3 - 4y) = \frac{d}{dx}(10x^2) \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(3x) + \frac{d}{dx}(y^3) - \frac{d}{dx}(4y) = \frac{d}{dx}(10x^2) \][/tex]
Using basic differentiation rules:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
Combining like terms:
[tex]\[ 3 + 3y^2 \frac{dy}{dx} - 4 \frac{dy}{dx} = 20x \][/tex]
So, we get:
[tex]\[ 3 + (3y^2 - 4) \frac{dy}{dx} = 20x \][/tex]
Solving for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ (3y^2 - 4) \frac{dy}{dx} = 20x - 3 \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4} \][/tex]
Given the simplified context of the differentiation problem:
[tex]\[ 3 - 20x \][/tex]
Part (c): Differentiate [tex]\( \cos y - y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(\cos y - y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
Differentiate each term:
[tex]\[ \frac{d}{dx}(\cos y) - \frac{d}{dx}(y^2) \][/tex]
Using chain rule and basic differentiation rules:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ -\sin y \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \][/tex]
Factoring out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( -\sin y - 2y \right) \frac{dy}{dx} = 0 \][/tex]
We can see that:
[tex]\[ \frac{dy}{dx} = 0 \][/tex]
Part (d): Differentiate [tex]\( x^2 + 2xy + y^2 = 8 \)[/tex] with respect to [tex]\( x \)[/tex].
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2xy + y^2) = \frac{d}{dx}(8) \][/tex]
The right side is straightforward:
[tex]\[ 0 \][/tex]
For the left side, differentiate each term:
[tex]\[ \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) + \frac{d}{dx}(y^2) \][/tex]
Using product and chain rules:
[tex]\[ 2x + 2 \left( x \frac{dy}{dx} + y \right) + 2y \frac{dy}{dx} \][/tex]
Combining like terms:
[tex]\[ 2x + 2x \frac{dy}{dx} + 2y + 2y \frac{dy}{dx} \][/tex]
So, we get:
[tex]\[ 2x + 2y \frac{dy}{dx} = 0 \][/tex]
Given the context of the problem:
[tex]\[ 2x + 2y \][/tex] is the result.
In summary, the differentiated expressions are:
a) [tex]\( 2x \)[/tex]
b) [tex]\( 3 - 20x \)[/tex]
c) [tex]\( 0 \)[/tex]
d) [tex]\( 2x + 2y \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.