Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find [tex]\( P(-2) \)[/tex] for [tex]\( P(x) = -2x^3 - 4x^2 - 9 \)[/tex] using the remainder theorem, we follow these steps:
1. Identify the polynomial:
[tex]\[ P(x) = -2x^3 - 4x^2 - 9 \][/tex]
2. Use Polynomial Long Division (or Synthetic Division):
We need to divide [tex]\( P(x) \)[/tex] by [tex]\( (x + 2) \)[/tex] to find the quotient and the remainder.
We start the division:
[tex]\[ \frac{-2x^3 - 4x^2 - 9}{x + 2} \][/tex]
3. Perform the division step-by-step:
- The leading term of the quotient is determined by dividing the leading term of the dividend by the leading term of the divisor:
[tex]\[ -2x^3 \div x = -2x^2 \][/tex]
- Multiply the entire divisor by this leading term:
[tex]\[ (-2x^2)(x + 2) = -2x^3 - 4x^2 \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (-2x^3 - 4x^2 - 9) - (-2x^3 - 4x^2) = -9 \][/tex]
At this point, the remainder is [tex]\(-9\)[/tex], and we have no more terms to divide.
So, the quotient is:
[tex]\[ -2x^2 \][/tex]
And the remainder is:
[tex]\[ -9 \][/tex]
4. Summary of Division:
The quotient of the division is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
The remainder of the division is:
[tex]\[ \text{Remainder} = -9 \][/tex]
5. Apply the Remainder Theorem:
According to the Remainder Theorem, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( x + 2 \)[/tex] is [tex]\( P(-2) \)[/tex].
Therefore,
[tex]\[ P(-2) = -9 \][/tex]
Thus, the final answer is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
[tex]\[ \text{Remainder} = -9 \][/tex]
[tex]\[ P(-2) = -9 \][/tex]
1. Identify the polynomial:
[tex]\[ P(x) = -2x^3 - 4x^2 - 9 \][/tex]
2. Use Polynomial Long Division (or Synthetic Division):
We need to divide [tex]\( P(x) \)[/tex] by [tex]\( (x + 2) \)[/tex] to find the quotient and the remainder.
We start the division:
[tex]\[ \frac{-2x^3 - 4x^2 - 9}{x + 2} \][/tex]
3. Perform the division step-by-step:
- The leading term of the quotient is determined by dividing the leading term of the dividend by the leading term of the divisor:
[tex]\[ -2x^3 \div x = -2x^2 \][/tex]
- Multiply the entire divisor by this leading term:
[tex]\[ (-2x^2)(x + 2) = -2x^3 - 4x^2 \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (-2x^3 - 4x^2 - 9) - (-2x^3 - 4x^2) = -9 \][/tex]
At this point, the remainder is [tex]\(-9\)[/tex], and we have no more terms to divide.
So, the quotient is:
[tex]\[ -2x^2 \][/tex]
And the remainder is:
[tex]\[ -9 \][/tex]
4. Summary of Division:
The quotient of the division is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
The remainder of the division is:
[tex]\[ \text{Remainder} = -9 \][/tex]
5. Apply the Remainder Theorem:
According to the Remainder Theorem, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( x + 2 \)[/tex] is [tex]\( P(-2) \)[/tex].
Therefore,
[tex]\[ P(-2) = -9 \][/tex]
Thus, the final answer is:
[tex]\[ \text{Quotient} = -2x^2 \][/tex]
[tex]\[ \text{Remainder} = -9 \][/tex]
[tex]\[ P(-2) = -9 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.