Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which function has an axis of symmetry at [tex]\(x = -\frac{1}{4}\)[/tex], we need to understand the concept of the axis of symmetry for a quadratic function.
For a quadratic function in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], the formula for the axis of symmetry is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
We will apply this formula to each given function and determine which one results in [tex]\( x = -\frac{1}{4} \)[/tex].
### 1. Function: [tex]\( f(x) = 2x^2 + x - 1 \)[/tex]
Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 1 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{1}{2 \times 2} = -\frac{1}{4} \][/tex]
This matches the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 2. Function: [tex]\( f(x) = 2x^2 - x + 1 \)[/tex]
Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = -1 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{-1}{2 \times 2} = \frac{1}{4} \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 3. Function: [tex]\( f(x) = x^2 + 2x - 1 \)[/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{2}{2 \times 1} = -1 \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 4. Function: [tex]\( f(x) = x^2 - 2x + 1 \)[/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -2 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{-2}{2 \times 1} = 1 \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### Conclusion
The function whose graph has an axis of symmetry at [tex]\( x = -\frac{1}{4} \)[/tex] is:
[tex]\[ \boxed{f(x) = 2x^2 + x - 1} \][/tex]
For a quadratic function in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], the formula for the axis of symmetry is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
We will apply this formula to each given function and determine which one results in [tex]\( x = -\frac{1}{4} \)[/tex].
### 1. Function: [tex]\( f(x) = 2x^2 + x - 1 \)[/tex]
Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = 1 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{1}{2 \times 2} = -\frac{1}{4} \][/tex]
This matches the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 2. Function: [tex]\( f(x) = 2x^2 - x + 1 \)[/tex]
Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = -1 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{-1}{2 \times 2} = \frac{1}{4} \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 3. Function: [tex]\( f(x) = x^2 + 2x - 1 \)[/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{2}{2 \times 1} = -1 \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### 4. Function: [tex]\( f(x) = x^2 - 2x + 1 \)[/tex]
Here, [tex]\( a = 1 \)[/tex] and [tex]\( b = -2 \)[/tex].
[tex]\[ x = -\frac{b}{2a} = -\frac{-2}{2 \times 1} = 1 \][/tex]
This does not match the given axis of symmetry [tex]\( x = -\frac{1}{4} \)[/tex].
### Conclusion
The function whose graph has an axis of symmetry at [tex]\( x = -\frac{1}{4} \)[/tex] is:
[tex]\[ \boxed{f(x) = 2x^2 + x - 1} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.