Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the range of the exponential function [tex]\( p(x) \)[/tex] that increases at a rate of [tex]\( 25\% \)[/tex], given it includes the point [tex]\((0,10)\)[/tex] and is shifted down 5 units, follow these steps:
1. Base Function Analysis:
The exponential function that increases at a rate of [tex]\( 25\% \)[/tex] can be written as [tex]\( f(x) = 10 \cdot 1.25^x \)[/tex], where [tex]\( f(0) = 10 \)[/tex].
2. Vertical Shift:
If we shift the function down by 5 units, the new function becomes [tex]\( g(x) = 10 \cdot 1.25^x - 5 \)[/tex].
3. Determining the Range:
Original exponential functions of the form [tex]\( 10 \cdot 1.25^x \)[/tex] have a range of [tex]\((0, \infty)\)[/tex]. When we subtract 5 from the output, the range shifts downward by 5 units.
Therefore, the range of our transformed function [tex]\( g(x) = 10 \cdot 1.25^x - 5 \)[/tex], changes accordingly:
[tex]\[ \text{Range of } g(x) = \left(0 - 5, \infty - 5\right) \][/tex]
[tex]\[ \text{Range of } g(x) = (-5, \infty) \][/tex]
Thus, the range of the function [tex]\( p(x) \)[/tex] is [tex]\( (-5, \infty) \)[/tex].
Therefore, the correct option is:
[tex]\[ (-5, \infty) \][/tex]
1. Base Function Analysis:
The exponential function that increases at a rate of [tex]\( 25\% \)[/tex] can be written as [tex]\( f(x) = 10 \cdot 1.25^x \)[/tex], where [tex]\( f(0) = 10 \)[/tex].
2. Vertical Shift:
If we shift the function down by 5 units, the new function becomes [tex]\( g(x) = 10 \cdot 1.25^x - 5 \)[/tex].
3. Determining the Range:
Original exponential functions of the form [tex]\( 10 \cdot 1.25^x \)[/tex] have a range of [tex]\((0, \infty)\)[/tex]. When we subtract 5 from the output, the range shifts downward by 5 units.
Therefore, the range of our transformed function [tex]\( g(x) = 10 \cdot 1.25^x - 5 \)[/tex], changes accordingly:
[tex]\[ \text{Range of } g(x) = \left(0 - 5, \infty - 5\right) \][/tex]
[tex]\[ \text{Range of } g(x) = (-5, \infty) \][/tex]
Thus, the range of the function [tex]\( p(x) \)[/tex] is [tex]\( (-5, \infty) \)[/tex].
Therefore, the correct option is:
[tex]\[ (-5, \infty) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.