Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the given problem, we need to determine the difference in the number of components assembled per day by an experienced employee compared to a new employee. This difference can be expressed as a function, which we'll denote as [tex]\(D(t)\)[/tex], where [tex]\(t\)[/tex] represents the number of hours worked in a day.
Given the functions representing the number of components assembled:
[tex]\[ N(t) = \frac{50t}{t+4} \][/tex]
[tex]\[ E(t) = \frac{70t}{t+3} \][/tex]
To find the difference function [tex]\(D(t)\)[/tex], we subtract [tex]\(N(t)\)[/tex] from [tex]\(E(t)\)[/tex]:
[tex]\[ D(t) = E(t) - N(t) \][/tex]
Substituting the given expressions for [tex]\(E(t)\)[/tex] and [tex]\(N(t)\)[/tex]:
[tex]\[ D(t) = \frac{70t}{t+3} - \frac{50t}{t+4} \][/tex]
To combine these fractions, we need a common denominator. The common denominator for [tex]\(\frac{70t}{t+3}\)[/tex] and [tex]\(\frac{50t}{t+4}\)[/tex] is [tex]\((t+3)(t+4)\)[/tex].
We'll rewrite each fraction with the common denominator:
[tex]\[ \frac{70t}{t+3} = \frac{70t(t+4)}{(t+3)(t+4)} \][/tex]
[tex]\[ \frac{50t}{t+4} = \frac{50t(t+3)}{(t+3)(t+4)} \][/tex]
So, we can write:
[tex]\[ D(t) = \frac{70t(t+4)}{(t+3)(t+4)} - \frac{50t(t+3)}{(t+3)(t+4)} \][/tex]
Now, combine the fractions:
[tex]\[ D(t) = \frac{70t(t+4) - 50t(t+3)}{(t+3)(t+4)} \][/tex]
Simplify the numerator:
[tex]\[ 70t(t+4) - 50t(t+3) = 70t^2 + 280t - 50t^2 - 150t \][/tex]
[tex]\[ = (70t^2 - 50t^2) + (280t - 150t) \][/tex]
[tex]\[ = 20t^2 + 130t \][/tex]
Thus, we have:
[tex]\[ D(t) = \frac{20t^2 + 130t}{(t+3)(t+4)} \][/tex]
Factoring the numerator:
[tex]\[ 20t^2 + 130t = 10t(2t + 13) \][/tex]
Which gives us:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]
So, the function that describes the difference in the number of components assembled per day by the experienced and new employees is:
[tex]\[ D(t)=\frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]
Therefore, the correct answer is:
B. [tex]\( D(t)=\frac{10t(2t+13)}{(t+3)(t+4)} \)[/tex]
Given the functions representing the number of components assembled:
[tex]\[ N(t) = \frac{50t}{t+4} \][/tex]
[tex]\[ E(t) = \frac{70t}{t+3} \][/tex]
To find the difference function [tex]\(D(t)\)[/tex], we subtract [tex]\(N(t)\)[/tex] from [tex]\(E(t)\)[/tex]:
[tex]\[ D(t) = E(t) - N(t) \][/tex]
Substituting the given expressions for [tex]\(E(t)\)[/tex] and [tex]\(N(t)\)[/tex]:
[tex]\[ D(t) = \frac{70t}{t+3} - \frac{50t}{t+4} \][/tex]
To combine these fractions, we need a common denominator. The common denominator for [tex]\(\frac{70t}{t+3}\)[/tex] and [tex]\(\frac{50t}{t+4}\)[/tex] is [tex]\((t+3)(t+4)\)[/tex].
We'll rewrite each fraction with the common denominator:
[tex]\[ \frac{70t}{t+3} = \frac{70t(t+4)}{(t+3)(t+4)} \][/tex]
[tex]\[ \frac{50t}{t+4} = \frac{50t(t+3)}{(t+3)(t+4)} \][/tex]
So, we can write:
[tex]\[ D(t) = \frac{70t(t+4)}{(t+3)(t+4)} - \frac{50t(t+3)}{(t+3)(t+4)} \][/tex]
Now, combine the fractions:
[tex]\[ D(t) = \frac{70t(t+4) - 50t(t+3)}{(t+3)(t+4)} \][/tex]
Simplify the numerator:
[tex]\[ 70t(t+4) - 50t(t+3) = 70t^2 + 280t - 50t^2 - 150t \][/tex]
[tex]\[ = (70t^2 - 50t^2) + (280t - 150t) \][/tex]
[tex]\[ = 20t^2 + 130t \][/tex]
Thus, we have:
[tex]\[ D(t) = \frac{20t^2 + 130t}{(t+3)(t+4)} \][/tex]
Factoring the numerator:
[tex]\[ 20t^2 + 130t = 10t(2t + 13) \][/tex]
Which gives us:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]
So, the function that describes the difference in the number of components assembled per day by the experienced and new employees is:
[tex]\[ D(t)=\frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]
Therefore, the correct answer is:
B. [tex]\( D(t)=\frac{10t(2t+13)}{(t+3)(t+4)} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.