Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
### Step-by-Step Solution
#### 3. Find the expansion of [tex]\((x + y)^4\)[/tex].
To expand [tex]\((x + y)^4\)[/tex], we can use the binomial theorem. The binomial theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \][/tex]
In our case, [tex]\(a = x\)[/tex], [tex]\(b = y\)[/tex], and [tex]\(n = 4\)[/tex]. Applying the binomial theorem, we get:
[tex]\[ (x + y)^4 = \sum_{k=0}^4 \binom{4}{k} x^{4-k} y^k \][/tex]
Now we can expand it term by term:
- When [tex]\(k = 0\)[/tex]:
[tex]\[ \binom{4}{0} x^{4-0} y^0 = \binom{4}{0} x^4 = 1 \cdot x^4 = x^4 \][/tex]
- When [tex]\(k = 1\)[/tex]:
[tex]\[ \binom{4}{1} x^{4-1} y^1 = \binom{4}{1} x^3 y = 4 \cdot x^3 y = 4x^3 y \][/tex]
- When [tex]\(k = 2\)[/tex]:
[tex]\[ \binom{4}{2} x^{4-2} y^2 = \binom{4}{2} x^2 y^2 = 6 \cdot x^2 y^2 = 6x^2 y^2 \][/tex]
- When [tex]\(k = 3\)[/tex]:
[tex]\[ \binom{4}{3} x^{4-3} y^3 = \binom{4}{3} x y^3 = 4 \cdot x y^3 = 4x y^3 \][/tex]
- When [tex]\(k = 4\)[/tex]:
[tex]\[ \binom{4}{4} x^{4-4} y^4 = \binom{4}{4} y^4 = 1 \cdot y^4 = y^4 \][/tex]
Putting all the terms together, the full expansion is:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
#### 4. Find the coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((x + y)^4\)[/tex].
From the expansion we found:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
We need to identify the coefficient of the term that includes [tex]\(x^3\)[/tex]. Looking at the term with [tex]\(x^3\)[/tex]:
- The term [tex]\(4x^3 y\)[/tex] contains [tex]\(x^3\)[/tex].
The coefficient of [tex]\(x^3\)[/tex] in [tex]\(4x^3 y\)[/tex] is:
[tex]\[ 4y \][/tex]
If [tex]\(y\)[/tex] is not specified, the coefficient is symbolic and given as [tex]\(4y\)[/tex]. If we are considering this strictly as a numeric value:
[tex]\[ \coeff_x3 = 0 \][/tex]
Thus, the coefficient of [tex]\(x^3\)[/tex] is [tex]\(4\)[/tex].
#### 3. Find the expansion of [tex]\((x + y)^4\)[/tex].
To expand [tex]\((x + y)^4\)[/tex], we can use the binomial theorem. The binomial theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \][/tex]
In our case, [tex]\(a = x\)[/tex], [tex]\(b = y\)[/tex], and [tex]\(n = 4\)[/tex]. Applying the binomial theorem, we get:
[tex]\[ (x + y)^4 = \sum_{k=0}^4 \binom{4}{k} x^{4-k} y^k \][/tex]
Now we can expand it term by term:
- When [tex]\(k = 0\)[/tex]:
[tex]\[ \binom{4}{0} x^{4-0} y^0 = \binom{4}{0} x^4 = 1 \cdot x^4 = x^4 \][/tex]
- When [tex]\(k = 1\)[/tex]:
[tex]\[ \binom{4}{1} x^{4-1} y^1 = \binom{4}{1} x^3 y = 4 \cdot x^3 y = 4x^3 y \][/tex]
- When [tex]\(k = 2\)[/tex]:
[tex]\[ \binom{4}{2} x^{4-2} y^2 = \binom{4}{2} x^2 y^2 = 6 \cdot x^2 y^2 = 6x^2 y^2 \][/tex]
- When [tex]\(k = 3\)[/tex]:
[tex]\[ \binom{4}{3} x^{4-3} y^3 = \binom{4}{3} x y^3 = 4 \cdot x y^3 = 4x y^3 \][/tex]
- When [tex]\(k = 4\)[/tex]:
[tex]\[ \binom{4}{4} x^{4-4} y^4 = \binom{4}{4} y^4 = 1 \cdot y^4 = y^4 \][/tex]
Putting all the terms together, the full expansion is:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
#### 4. Find the coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((x + y)^4\)[/tex].
From the expansion we found:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
We need to identify the coefficient of the term that includes [tex]\(x^3\)[/tex]. Looking at the term with [tex]\(x^3\)[/tex]:
- The term [tex]\(4x^3 y\)[/tex] contains [tex]\(x^3\)[/tex].
The coefficient of [tex]\(x^3\)[/tex] in [tex]\(4x^3 y\)[/tex] is:
[tex]\[ 4y \][/tex]
If [tex]\(y\)[/tex] is not specified, the coefficient is symbolic and given as [tex]\(4y\)[/tex]. If we are considering this strictly as a numeric value:
[tex]\[ \coeff_x3 = 0 \][/tex]
Thus, the coefficient of [tex]\(x^3\)[/tex] is [tex]\(4\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.