Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
### Step-by-Step Solution
#### 3. Find the expansion of [tex]\((x + y)^4\)[/tex].
To expand [tex]\((x + y)^4\)[/tex], we can use the binomial theorem. The binomial theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \][/tex]
In our case, [tex]\(a = x\)[/tex], [tex]\(b = y\)[/tex], and [tex]\(n = 4\)[/tex]. Applying the binomial theorem, we get:
[tex]\[ (x + y)^4 = \sum_{k=0}^4 \binom{4}{k} x^{4-k} y^k \][/tex]
Now we can expand it term by term:
- When [tex]\(k = 0\)[/tex]:
[tex]\[ \binom{4}{0} x^{4-0} y^0 = \binom{4}{0} x^4 = 1 \cdot x^4 = x^4 \][/tex]
- When [tex]\(k = 1\)[/tex]:
[tex]\[ \binom{4}{1} x^{4-1} y^1 = \binom{4}{1} x^3 y = 4 \cdot x^3 y = 4x^3 y \][/tex]
- When [tex]\(k = 2\)[/tex]:
[tex]\[ \binom{4}{2} x^{4-2} y^2 = \binom{4}{2} x^2 y^2 = 6 \cdot x^2 y^2 = 6x^2 y^2 \][/tex]
- When [tex]\(k = 3\)[/tex]:
[tex]\[ \binom{4}{3} x^{4-3} y^3 = \binom{4}{3} x y^3 = 4 \cdot x y^3 = 4x y^3 \][/tex]
- When [tex]\(k = 4\)[/tex]:
[tex]\[ \binom{4}{4} x^{4-4} y^4 = \binom{4}{4} y^4 = 1 \cdot y^4 = y^4 \][/tex]
Putting all the terms together, the full expansion is:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
#### 4. Find the coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((x + y)^4\)[/tex].
From the expansion we found:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
We need to identify the coefficient of the term that includes [tex]\(x^3\)[/tex]. Looking at the term with [tex]\(x^3\)[/tex]:
- The term [tex]\(4x^3 y\)[/tex] contains [tex]\(x^3\)[/tex].
The coefficient of [tex]\(x^3\)[/tex] in [tex]\(4x^3 y\)[/tex] is:
[tex]\[ 4y \][/tex]
If [tex]\(y\)[/tex] is not specified, the coefficient is symbolic and given as [tex]\(4y\)[/tex]. If we are considering this strictly as a numeric value:
[tex]\[ \coeff_x3 = 0 \][/tex]
Thus, the coefficient of [tex]\(x^3\)[/tex] is [tex]\(4\)[/tex].
#### 3. Find the expansion of [tex]\((x + y)^4\)[/tex].
To expand [tex]\((x + y)^4\)[/tex], we can use the binomial theorem. The binomial theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \][/tex]
In our case, [tex]\(a = x\)[/tex], [tex]\(b = y\)[/tex], and [tex]\(n = 4\)[/tex]. Applying the binomial theorem, we get:
[tex]\[ (x + y)^4 = \sum_{k=0}^4 \binom{4}{k} x^{4-k} y^k \][/tex]
Now we can expand it term by term:
- When [tex]\(k = 0\)[/tex]:
[tex]\[ \binom{4}{0} x^{4-0} y^0 = \binom{4}{0} x^4 = 1 \cdot x^4 = x^4 \][/tex]
- When [tex]\(k = 1\)[/tex]:
[tex]\[ \binom{4}{1} x^{4-1} y^1 = \binom{4}{1} x^3 y = 4 \cdot x^3 y = 4x^3 y \][/tex]
- When [tex]\(k = 2\)[/tex]:
[tex]\[ \binom{4}{2} x^{4-2} y^2 = \binom{4}{2} x^2 y^2 = 6 \cdot x^2 y^2 = 6x^2 y^2 \][/tex]
- When [tex]\(k = 3\)[/tex]:
[tex]\[ \binom{4}{3} x^{4-3} y^3 = \binom{4}{3} x y^3 = 4 \cdot x y^3 = 4x y^3 \][/tex]
- When [tex]\(k = 4\)[/tex]:
[tex]\[ \binom{4}{4} x^{4-4} y^4 = \binom{4}{4} y^4 = 1 \cdot y^4 = y^4 \][/tex]
Putting all the terms together, the full expansion is:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
#### 4. Find the coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((x + y)^4\)[/tex].
From the expansion we found:
[tex]\[ (x + y)^4 = x^4 + 4x^3 y + 6x^2 y^2 + 4x y^3 + y^4 \][/tex]
We need to identify the coefficient of the term that includes [tex]\(x^3\)[/tex]. Looking at the term with [tex]\(x^3\)[/tex]:
- The term [tex]\(4x^3 y\)[/tex] contains [tex]\(x^3\)[/tex].
The coefficient of [tex]\(x^3\)[/tex] in [tex]\(4x^3 y\)[/tex] is:
[tex]\[ 4y \][/tex]
If [tex]\(y\)[/tex] is not specified, the coefficient is symbolic and given as [tex]\(4y\)[/tex]. If we are considering this strictly as a numeric value:
[tex]\[ \coeff_x3 = 0 \][/tex]
Thus, the coefficient of [tex]\(x^3\)[/tex] is [tex]\(4\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.