Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's break down the solution step-by-step to find the constants that will eliminate one of the variables when the equations are added together.
The given system of equations is:
[tex]\[ \begin{array}{l} 5x + 13y = 232 \\ 12x + 7y = 218 \end{array} \][/tex]
### Step 1: Eliminate [tex]\( y \)[/tex]
To eliminate [tex]\( y \)[/tex], we need to make the coefficients of [tex]\( y \)[/tex] in both equations opposites of each other.
1. Identify the coefficients of [tex]\( y \)[/tex]:
- In the first equation, the coefficient of [tex]\( y \)[/tex] is 13.
- In the second equation, the coefficient of [tex]\( y \)[/tex] is 7.
2. Determine the least common multiple (LCM) of the coefficients:
- The LCM of 13 and 7 is 91.
3. Multiply the equations to make the coefficients of [tex]\( y \)[/tex] opposites:
- To make the coefficient [tex]\( 13y \)[/tex] become [tex]\( 91y \)[/tex], we multiply the first equation by 7.
- To make the coefficient [tex]\( 7y \)[/tex] become [tex]\( -91y \)[/tex], we multiply the second equation by -13.
Thus, the equations should be multiplied as follows:
- The first equation by 7.
- The second equation by -13.
### Step 2: Eliminate [tex]\( x \)[/tex]
To eliminate [tex]\( x \)[/tex], we need to make the coefficients of [tex]\( x \)[/tex] in both equations opposites of each other.
1. Identify the coefficients of [tex]\( x \)[/tex]:
- In the first equation, the coefficient of [tex]\( x \)[/tex] is 5.
- In the second equation, the coefficient of [tex]\( x \)[/tex] is 12.
2. Determine the least common multiple (LCM) of the coefficients:
- The LCM of 5 and 12 is 60.
3. Multiply the equations to make the coefficients of [tex]\( x \)[/tex] opposites:
- To make the coefficient [tex]\( 5x \)[/tex] become [tex]\( 60x \)[/tex], we multiply the first equation by 12.
- To make the coefficient [tex]\( 12x \)[/tex] become [tex]\( -60x \)[/tex], we multiply the second equation by -5.
However, in the given problem, we do not need to use negative signs for this elimination, making it simpler:
- The first equation by 12.
- The second equation by 5.
### Conclusion:
#### To Eliminate [tex]\( y \)[/tex]:
1. The first equation can be multiplied by 7 and the second equation by -13.
2. The first equation can be multiplied by -13 and the second equation by 7 to eliminate [tex]\( y \)[/tex] in a different manner.
#### To Eliminate [tex]\( x \)[/tex]:
1. The first equation can be multiplied by 12 and the second equation by 5.
2. The first equation can be multiplied by -12 and the second equation by 5 to eliminate [tex]\( x \)[/tex] in a different manner.
The given system of equations is:
[tex]\[ \begin{array}{l} 5x + 13y = 232 \\ 12x + 7y = 218 \end{array} \][/tex]
### Step 1: Eliminate [tex]\( y \)[/tex]
To eliminate [tex]\( y \)[/tex], we need to make the coefficients of [tex]\( y \)[/tex] in both equations opposites of each other.
1. Identify the coefficients of [tex]\( y \)[/tex]:
- In the first equation, the coefficient of [tex]\( y \)[/tex] is 13.
- In the second equation, the coefficient of [tex]\( y \)[/tex] is 7.
2. Determine the least common multiple (LCM) of the coefficients:
- The LCM of 13 and 7 is 91.
3. Multiply the equations to make the coefficients of [tex]\( y \)[/tex] opposites:
- To make the coefficient [tex]\( 13y \)[/tex] become [tex]\( 91y \)[/tex], we multiply the first equation by 7.
- To make the coefficient [tex]\( 7y \)[/tex] become [tex]\( -91y \)[/tex], we multiply the second equation by -13.
Thus, the equations should be multiplied as follows:
- The first equation by 7.
- The second equation by -13.
### Step 2: Eliminate [tex]\( x \)[/tex]
To eliminate [tex]\( x \)[/tex], we need to make the coefficients of [tex]\( x \)[/tex] in both equations opposites of each other.
1. Identify the coefficients of [tex]\( x \)[/tex]:
- In the first equation, the coefficient of [tex]\( x \)[/tex] is 5.
- In the second equation, the coefficient of [tex]\( x \)[/tex] is 12.
2. Determine the least common multiple (LCM) of the coefficients:
- The LCM of 5 and 12 is 60.
3. Multiply the equations to make the coefficients of [tex]\( x \)[/tex] opposites:
- To make the coefficient [tex]\( 5x \)[/tex] become [tex]\( 60x \)[/tex], we multiply the first equation by 12.
- To make the coefficient [tex]\( 12x \)[/tex] become [tex]\( -60x \)[/tex], we multiply the second equation by -5.
However, in the given problem, we do not need to use negative signs for this elimination, making it simpler:
- The first equation by 12.
- The second equation by 5.
### Conclusion:
#### To Eliminate [tex]\( y \)[/tex]:
1. The first equation can be multiplied by 7 and the second equation by -13.
2. The first equation can be multiplied by -13 and the second equation by 7 to eliminate [tex]\( y \)[/tex] in a different manner.
#### To Eliminate [tex]\( x \)[/tex]:
1. The first equation can be multiplied by 12 and the second equation by 5.
2. The first equation can be multiplied by -12 and the second equation by 5 to eliminate [tex]\( x \)[/tex] in a different manner.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.