Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line that is perpendicular to the given line [tex]\(4x - 5y = 5\)[/tex] and passes through the point [tex]\((5,3)\)[/tex], follow these steps:
1. Convert the given line to its slope-intercept form to find its slope:
- The given line is [tex]\(4x - 5y = 5\)[/tex].
- Isolate [tex]\(y\)[/tex] on one side to convert it to the form [tex]\(y = mx + b\)[/tex].
- Start by subtracting [tex]\(4x\)[/tex] from both sides:
[tex]\[ -5y = -4x + 5 \][/tex]
- Divide each term by [tex]\(-5\)[/tex]:
[tex]\[ y = \frac{4}{5}x - 1 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(\frac{4}{5}\)[/tex].
2. Determine the slope of the perpendicular line:
- The slope of a line perpendicular to another is the negative reciprocal of the original slope.
- For the slope [tex]\(\frac{4}{5}\)[/tex], the negative reciprocal is [tex]\(-\frac{5}{4}\)[/tex].
3. Use the point-slope form of the equation of a line:
- The point-slope form is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is the given point and [tex]\(m\)[/tex] is the slope of the line.
- Here, the point is [tex]\((5,3)\)[/tex] and the slope is [tex]\(-\frac{5}{4}\)[/tex].
4. Substitute the point and the slope into the point-slope form:
- [tex]\(y - 3 = -\frac{5}{4}(x - 5)\)[/tex].
5. Convert this equation to slope-intercept form (y = mx + b):
- Distribute the slope [tex]\(-\frac{5}{4}\)[/tex]:
[tex]\[ y - 3 = -\frac{5}{4}x + \frac{25}{4} \][/tex]
- Isolate [tex]\(y\)[/tex] by adding 3 to both sides:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + 3 \][/tex]
- Convert 3 to a fraction with the same denominator:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + \frac{12}{4} \][/tex]
- Combine the fractions:
[tex]\[ y = -\frac{5}{4}x + \frac{37}{4} \][/tex]
So, the equation of the line that is perpendicular to the given line and passes through the point [tex]\((5,3)\)[/tex] is [tex]\(y = -\frac{5}{4}x + \frac{37}{4}\)[/tex].
Given the multiple choices provided, the equivalent form of this equation is:
[tex]\[ 5x + 4y = 37 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5 x + 4 y = 37} \][/tex]
1. Convert the given line to its slope-intercept form to find its slope:
- The given line is [tex]\(4x - 5y = 5\)[/tex].
- Isolate [tex]\(y\)[/tex] on one side to convert it to the form [tex]\(y = mx + b\)[/tex].
- Start by subtracting [tex]\(4x\)[/tex] from both sides:
[tex]\[ -5y = -4x + 5 \][/tex]
- Divide each term by [tex]\(-5\)[/tex]:
[tex]\[ y = \frac{4}{5}x - 1 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(\frac{4}{5}\)[/tex].
2. Determine the slope of the perpendicular line:
- The slope of a line perpendicular to another is the negative reciprocal of the original slope.
- For the slope [tex]\(\frac{4}{5}\)[/tex], the negative reciprocal is [tex]\(-\frac{5}{4}\)[/tex].
3. Use the point-slope form of the equation of a line:
- The point-slope form is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is the given point and [tex]\(m\)[/tex] is the slope of the line.
- Here, the point is [tex]\((5,3)\)[/tex] and the slope is [tex]\(-\frac{5}{4}\)[/tex].
4. Substitute the point and the slope into the point-slope form:
- [tex]\(y - 3 = -\frac{5}{4}(x - 5)\)[/tex].
5. Convert this equation to slope-intercept form (y = mx + b):
- Distribute the slope [tex]\(-\frac{5}{4}\)[/tex]:
[tex]\[ y - 3 = -\frac{5}{4}x + \frac{25}{4} \][/tex]
- Isolate [tex]\(y\)[/tex] by adding 3 to both sides:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + 3 \][/tex]
- Convert 3 to a fraction with the same denominator:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + \frac{12}{4} \][/tex]
- Combine the fractions:
[tex]\[ y = -\frac{5}{4}x + \frac{37}{4} \][/tex]
So, the equation of the line that is perpendicular to the given line and passes through the point [tex]\((5,3)\)[/tex] is [tex]\(y = -\frac{5}{4}x + \frac{37}{4}\)[/tex].
Given the multiple choices provided, the equivalent form of this equation is:
[tex]\[ 5x + 4y = 37 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5 x + 4 y = 37} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.