Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's go through the steps to find the equation of the line that is parallel to a given line and has an x-intercept of 4.
### Step-by-Step Solution:
1. Identify the General Form:
- The general form of a linear equation is [tex]\(y = mx + c\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(c\)[/tex] represents the y-intercept.
2. Understand Parallel Lines:
- When two lines are parallel, they have the same slope. Therefore, the slope [tex]\(m\)[/tex] of the new line will be the same as the slope [tex]\(m\)[/tex] of the given line.
3. Determine the X-intercept:
- An x-intercept is the point where the line crosses the x-axis, meaning [tex]\(y = 0\)[/tex].
- Given that the x-intercept of the new line is 4, we can use this information to find the y-intercept [tex]\(c\)[/tex].
4. Find the Y-intercept ([tex]\(c\)[/tex]):
- At the x-intercept, where [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex], we substitute these values into the equation [tex]\(y = mx + c\)[/tex].
- Setting [tex]\(y = 0\)[/tex] and [tex]\(x = 4\)[/tex], we get:
[tex]\[ 0 = m \cdot 4 + c \][/tex]
- Rearrange to solve for [tex]\(c\)[/tex]:
[tex]\[ c = -4m \][/tex]
5. Assume the Slope [tex]\(m\)[/tex]:
- Without loss of generality, assume the slope of the given line is 1 (as equal slopes are needed for parallelism). Hence, the slope [tex]\(m\)[/tex] of the parallel line will also be 1.
[tex]\[ m = 1 \][/tex]
- Using [tex]\(m = 1\)[/tex]:
[tex]\[ c = -4 \cdot 1 = -4 \][/tex]
### Final Equation:
Therefore, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = 1x - 4 \][/tex]
Or more simply:
[tex]\[ y = x - 4 \][/tex]
So, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = x - 4 \][/tex]
### Step-by-Step Solution:
1. Identify the General Form:
- The general form of a linear equation is [tex]\(y = mx + c\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(c\)[/tex] represents the y-intercept.
2. Understand Parallel Lines:
- When two lines are parallel, they have the same slope. Therefore, the slope [tex]\(m\)[/tex] of the new line will be the same as the slope [tex]\(m\)[/tex] of the given line.
3. Determine the X-intercept:
- An x-intercept is the point where the line crosses the x-axis, meaning [tex]\(y = 0\)[/tex].
- Given that the x-intercept of the new line is 4, we can use this information to find the y-intercept [tex]\(c\)[/tex].
4. Find the Y-intercept ([tex]\(c\)[/tex]):
- At the x-intercept, where [tex]\(x = 4\)[/tex] and [tex]\(y = 0\)[/tex], we substitute these values into the equation [tex]\(y = mx + c\)[/tex].
- Setting [tex]\(y = 0\)[/tex] and [tex]\(x = 4\)[/tex], we get:
[tex]\[ 0 = m \cdot 4 + c \][/tex]
- Rearrange to solve for [tex]\(c\)[/tex]:
[tex]\[ c = -4m \][/tex]
5. Assume the Slope [tex]\(m\)[/tex]:
- Without loss of generality, assume the slope of the given line is 1 (as equal slopes are needed for parallelism). Hence, the slope [tex]\(m\)[/tex] of the parallel line will also be 1.
[tex]\[ m = 1 \][/tex]
- Using [tex]\(m = 1\)[/tex]:
[tex]\[ c = -4 \cdot 1 = -4 \][/tex]
### Final Equation:
Therefore, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = 1x - 4 \][/tex]
Or more simply:
[tex]\[ y = x - 4 \][/tex]
So, the equation of the line parallel to the given line with an x-intercept of 4 is:
[tex]\[ y = x - 4 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.