Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the problem step-by-step:
1. Write the balanced chemical equation:
[tex]\[ \text{MgCl}_2 + 2 \text{KOH} \rightarrow \text{Mg(OH)}_2 + 2 \text{KCl} \][/tex]
2. Identify the given quantities:
- Moles of [tex]\(\text{MgCl}_2\)[/tex]: 1 mole
- Moles of KOH: 3 moles
3. Determine the mole ratio from the balanced equation:
- For every 1 mole of [tex]\(\text{MgCl}_2\)[/tex], 2 moles of KOH are required.
4. Calculate the moles of KOH required to completely react with 1 mole of [tex]\(\text{MgCl}_2\)[/tex]:
[tex]\[ 1 \text{ mole of } \text{MgCl}_2 \times 2 \text{ moles of KOH per 1 mole of } \text{MgCl}_2 = 2 \text{ moles of KOH} \][/tex]
So, to react with 1 mole of [tex]\(\text{MgCl}_2\)[/tex], we need 2 moles of KOH.
5. Compare the required moles of KOH with the available moles:
- Required moles of KOH: 2 moles
- Available moles of KOH: 3 moles
6. Since we have more KOH (3 moles) than needed (2 moles), we have excess KOH, and the limiting reagent will not be KOH.
7. Since [tex]\(\text{MgCl}_2\)[/tex] is the reactant that will be consumed completely first, it is the limiting reagent.
Therefore, the answer is:
[tex]\[ \text{D. } \text{MgCl}_2 \][/tex]
1. Write the balanced chemical equation:
[tex]\[ \text{MgCl}_2 + 2 \text{KOH} \rightarrow \text{Mg(OH)}_2 + 2 \text{KCl} \][/tex]
2. Identify the given quantities:
- Moles of [tex]\(\text{MgCl}_2\)[/tex]: 1 mole
- Moles of KOH: 3 moles
3. Determine the mole ratio from the balanced equation:
- For every 1 mole of [tex]\(\text{MgCl}_2\)[/tex], 2 moles of KOH are required.
4. Calculate the moles of KOH required to completely react with 1 mole of [tex]\(\text{MgCl}_2\)[/tex]:
[tex]\[ 1 \text{ mole of } \text{MgCl}_2 \times 2 \text{ moles of KOH per 1 mole of } \text{MgCl}_2 = 2 \text{ moles of KOH} \][/tex]
So, to react with 1 mole of [tex]\(\text{MgCl}_2\)[/tex], we need 2 moles of KOH.
5. Compare the required moles of KOH with the available moles:
- Required moles of KOH: 2 moles
- Available moles of KOH: 3 moles
6. Since we have more KOH (3 moles) than needed (2 moles), we have excess KOH, and the limiting reagent will not be KOH.
7. Since [tex]\(\text{MgCl}_2\)[/tex] is the reactant that will be consumed completely first, it is the limiting reagent.
Therefore, the answer is:
[tex]\[ \text{D. } \text{MgCl}_2 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.