Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the problem step by step by calculating the density for each rock sample and then determining its type based on the given density ranges.
### Step 1: Calculate the Densities
We start by using the formula for density:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
#### Sample 1:
Mass = 1.17 g
Volume = 0.33 cm³
[tex]\[ \text{Density}_1 = \frac{1.17 \text{ g}}{0.33 \text{ cm}^3} = 3.545454545454545 \text{ g/cm}^3 \][/tex]
#### Sample 2:
Mass = 2.7 g
Volume = 1.1 cm³
[tex]\[ \text{Density}_2 = \frac{2.7 \text{ g}}{1.1 \text{ cm}^3} = 2.4545454545454546 \text{ g/cm}^3 \][/tex]
#### Sample 3:
Mass = 11.2 g
Volume = 1.9 cm³
[tex]\[ \text{Density}_3 = \frac{11.2 \text{ g}}{1.9 \text{ cm}^3} = 5.894736842105263 \text{ g/cm}^3 \][/tex]
### Step 2: Determine the Rock Types
Next, we compare the calculated densities with the given density ranges for different minerals.
#### Sample 1:
Density = 3.545454545454545 g/cm³
According to the table:
- Diamond: 3.50-3.55 g/cm³
This density falls within the range for Diamond. Thus, Sample 1 is a Diamond.
#### Sample 2:
Density = 2.4545454545454546 g/cm³
According to the table:
- Common glass: 2.40-2.80 g/cm³
This density falls within the range for Common glass. Thus, Sample 2 is Common glass.
#### Sample 3:
Density = 5.894736842105263 g/cm³
According to the table:
- Cubic zirconia: 5.50-5.90 g/cm³
This density falls within the range for Cubic zirconia. Thus, Sample 3 is Cubic zirconia.
### Conclusion
Summarizing the findings:
1. If a rock sample has a mass of 1.17 g and a volume of 0.33 cm³, it is a Diamond.
2. If a rock sample has a mass of 2.7 g and a volume of 1.1 cm³, it is Common glass.
3. If a rock sample has a mass of 11.2 g and a volume of 1.9 cm³, it is Cubic zirconia.
### Step 1: Calculate the Densities
We start by using the formula for density:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
#### Sample 1:
Mass = 1.17 g
Volume = 0.33 cm³
[tex]\[ \text{Density}_1 = \frac{1.17 \text{ g}}{0.33 \text{ cm}^3} = 3.545454545454545 \text{ g/cm}^3 \][/tex]
#### Sample 2:
Mass = 2.7 g
Volume = 1.1 cm³
[tex]\[ \text{Density}_2 = \frac{2.7 \text{ g}}{1.1 \text{ cm}^3} = 2.4545454545454546 \text{ g/cm}^3 \][/tex]
#### Sample 3:
Mass = 11.2 g
Volume = 1.9 cm³
[tex]\[ \text{Density}_3 = \frac{11.2 \text{ g}}{1.9 \text{ cm}^3} = 5.894736842105263 \text{ g/cm}^3 \][/tex]
### Step 2: Determine the Rock Types
Next, we compare the calculated densities with the given density ranges for different minerals.
#### Sample 1:
Density = 3.545454545454545 g/cm³
According to the table:
- Diamond: 3.50-3.55 g/cm³
This density falls within the range for Diamond. Thus, Sample 1 is a Diamond.
#### Sample 2:
Density = 2.4545454545454546 g/cm³
According to the table:
- Common glass: 2.40-2.80 g/cm³
This density falls within the range for Common glass. Thus, Sample 2 is Common glass.
#### Sample 3:
Density = 5.894736842105263 g/cm³
According to the table:
- Cubic zirconia: 5.50-5.90 g/cm³
This density falls within the range for Cubic zirconia. Thus, Sample 3 is Cubic zirconia.
### Conclusion
Summarizing the findings:
1. If a rock sample has a mass of 1.17 g and a volume of 0.33 cm³, it is a Diamond.
2. If a rock sample has a mass of 2.7 g and a volume of 1.1 cm³, it is Common glass.
3. If a rock sample has a mass of 11.2 g and a volume of 1.9 cm³, it is Cubic zirconia.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.