At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the average atomic mass of an element with isotopes [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex], one must use the concept of the weighted average. This involves multiplying the mass of each isotope by its relative abundance (expressed as a percentage) and then summing these values. Each percentage must be converted from a percent to a fraction (by dividing by 100) before performing the multiplication.
Given the choices:
Choice A:
[tex]\[ \frac{\text{(mass of } A + \text{ mass of } B + \text{ mass of } C)}{3} \][/tex]
This simply averages the masses of the isotopes without considering their relative abundances. Hence, it is not correct.
Choice B:
[tex]\[ \frac{[(\text{ mass of } A) \times (\% \text{ of } A) + (\text{ mass of } B) \times (\% \text{ of } B) + (\text{ mass of } C) \times (\% \text{ of } C)]}{3} \][/tex]
This formula incorrectly divides the sum of the weighted masses by 3, which is not how weighted averages are calculated.
Choice C:
[tex]\[ \frac{\text{(mass of } A)}{(\% \text{ of } A)} + \frac{\text{(mass of B)}}{(\% \text{ of } B)} + \frac{\text{(mass of } C)}{(\% \text{ of } C)} \][/tex]
This formula reverses the intended operation by dividing the mass of each isotope by their respective percentages. This does not produce a correct weighted average.
Choice D:
[tex]\[ (\text{mass of } A) \times (\% \text{ of } A) + (\text{mass of } B) \times (\% \text{ of } B) + (\text{mass of } C) \times (\% \text{ of } C) \][/tex]
This choice calculates the average atomic mass correctly by taking the weighted sum of the masses of the isotopes multiplied by their relative abundances.
Therefore, the correct choice is:
[tex]\[ \boxed{D} \][/tex]
Given the choices:
Choice A:
[tex]\[ \frac{\text{(mass of } A + \text{ mass of } B + \text{ mass of } C)}{3} \][/tex]
This simply averages the masses of the isotopes without considering their relative abundances. Hence, it is not correct.
Choice B:
[tex]\[ \frac{[(\text{ mass of } A) \times (\% \text{ of } A) + (\text{ mass of } B) \times (\% \text{ of } B) + (\text{ mass of } C) \times (\% \text{ of } C)]}{3} \][/tex]
This formula incorrectly divides the sum of the weighted masses by 3, which is not how weighted averages are calculated.
Choice C:
[tex]\[ \frac{\text{(mass of } A)}{(\% \text{ of } A)} + \frac{\text{(mass of B)}}{(\% \text{ of } B)} + \frac{\text{(mass of } C)}{(\% \text{ of } C)} \][/tex]
This formula reverses the intended operation by dividing the mass of each isotope by their respective percentages. This does not produce a correct weighted average.
Choice D:
[tex]\[ (\text{mass of } A) \times (\% \text{ of } A) + (\text{mass of } B) \times (\% \text{ of } B) + (\text{mass of } C) \times (\% \text{ of } C) \][/tex]
This choice calculates the average atomic mass correctly by taking the weighted sum of the masses of the isotopes multiplied by their relative abundances.
Therefore, the correct choice is:
[tex]\[ \boxed{D} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.