At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether the given relation is a function, we need to understand the definition of a function.
A function is a relation in which every element of the domain (the set of all possible inputs, or 'x' values) is associated with exactly one element of the codomain (the set of all possible outputs, or 'y' values). This means that for every 'x' value in the relation, there should be only one corresponding 'y' value.
Given the relation:
[tex]\[ \{(3,-2),(1,2),(-1,-4),(-1,2)\} \][/tex]
We can list the pairs of 'x' and 'y' values:
[tex]\[ (3, -2), (1, 2), (-1, -4), (-1, 2) \][/tex]
Next, observe the 'x' values in these pairs:
[tex]\[ 3, 1, -1, -1 \][/tex]
We see that the 'x' value [tex]\(-1\)[/tex] appears more than once, and it corresponds to different 'y' values, specifically [tex]\(-4\)[/tex] and [tex]\(2\)[/tex].
This situation violates the definition of a function because a single 'x' value must correspond to only one 'y' value. Since the 'x' value [tex]\(-1\)[/tex] corresponds to multiple 'y' values, the given relation is not a function.
Thus, the answer to the question is:
[tex]\[ \text{No} \][/tex]
A function is a relation in which every element of the domain (the set of all possible inputs, or 'x' values) is associated with exactly one element of the codomain (the set of all possible outputs, or 'y' values). This means that for every 'x' value in the relation, there should be only one corresponding 'y' value.
Given the relation:
[tex]\[ \{(3,-2),(1,2),(-1,-4),(-1,2)\} \][/tex]
We can list the pairs of 'x' and 'y' values:
[tex]\[ (3, -2), (1, 2), (-1, -4), (-1, 2) \][/tex]
Next, observe the 'x' values in these pairs:
[tex]\[ 3, 1, -1, -1 \][/tex]
We see that the 'x' value [tex]\(-1\)[/tex] appears more than once, and it corresponds to different 'y' values, specifically [tex]\(-4\)[/tex] and [tex]\(2\)[/tex].
This situation violates the definition of a function because a single 'x' value must correspond to only one 'y' value. Since the 'x' value [tex]\(-1\)[/tex] corresponds to multiple 'y' values, the given relation is not a function.
Thus, the answer to the question is:
[tex]\[ \text{No} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.