Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the reciprocal of the product of the fractions [tex]\(\frac{-3}{8} \times \frac{-7}{13}\)[/tex], let's break it down into a detailed solution:
1. Compute the product of the fractions:
The multiplication of two fractions is done by multiplying their numerators together and their denominators together:
[tex]\[ \frac{-3}{8} \times \frac{-7}{13} = \frac{(-3) \times (-7)}{8 \times 13} \][/tex]
2. Simplify the product:
Simplifying the above expression:
[tex]\[ \frac{-3 \times -7}{8 \times 13} = \frac{21}{104} \][/tex]
3. Find the reciprocal of the product:
The reciprocal of a fraction [tex]\(\frac{a}{b}\)[/tex] is found by flipping the numerator and the denominator, giving [tex]\(\frac{b}{a}\)[/tex]. Therefore, the reciprocal of [tex]\(\frac{21}{104}\)[/tex] is:
[tex]\[ \frac{104}{21} \][/tex]
4. Verify which option matches the reciprocal:
We are given the options to select from:
[tex]\[ \text{a) } \frac{104}{21} \quad \text{b) } \frac{-104}{21} \quad \text{c) } \frac{21}{104} \quad \text{d) } \frac{-21}{104} \][/tex]
From our calculations, the correct reciprocal of the product [tex]\(\frac{21}{104}\)[/tex] is [tex]\(\frac{104}{21}\)[/tex], which matches option (a).
Therefore, the correct answer is (a) [tex]\(\frac{104}{21}\)[/tex].
1. Compute the product of the fractions:
The multiplication of two fractions is done by multiplying their numerators together and their denominators together:
[tex]\[ \frac{-3}{8} \times \frac{-7}{13} = \frac{(-3) \times (-7)}{8 \times 13} \][/tex]
2. Simplify the product:
Simplifying the above expression:
[tex]\[ \frac{-3 \times -7}{8 \times 13} = \frac{21}{104} \][/tex]
3. Find the reciprocal of the product:
The reciprocal of a fraction [tex]\(\frac{a}{b}\)[/tex] is found by flipping the numerator and the denominator, giving [tex]\(\frac{b}{a}\)[/tex]. Therefore, the reciprocal of [tex]\(\frac{21}{104}\)[/tex] is:
[tex]\[ \frac{104}{21} \][/tex]
4. Verify which option matches the reciprocal:
We are given the options to select from:
[tex]\[ \text{a) } \frac{104}{21} \quad \text{b) } \frac{-104}{21} \quad \text{c) } \frac{21}{104} \quad \text{d) } \frac{-21}{104} \][/tex]
From our calculations, the correct reciprocal of the product [tex]\(\frac{21}{104}\)[/tex] is [tex]\(\frac{104}{21}\)[/tex], which matches option (a).
Therefore, the correct answer is (a) [tex]\(\frac{104}{21}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.