Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\( 1.13^x = 2.97 \)[/tex] for [tex]\( x \)[/tex], we can use the properties of logarithms. Specifically, we will use the fact that if [tex]\( a^x = b \)[/tex], then [tex]\( x = \frac{\log(b)}{\log(a)} \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.