Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\( 1.13^x = 2.97 \)[/tex] for [tex]\( x \)[/tex], we can use the properties of logarithms. Specifically, we will use the fact that if [tex]\( a^x = b \)[/tex], then [tex]\( x = \frac{\log(b)}{\log(a)} \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.