Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\( 1.13^x = 2.97 \)[/tex] for [tex]\( x \)[/tex], we can use the properties of logarithms. Specifically, we will use the fact that if [tex]\( a^x = b \)[/tex], then [tex]\( x = \frac{\log(b)}{\log(a)} \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ 1.13^x = 2.97 \][/tex]
2. Take the logarithm of both sides. It's most common to use the natural logarithm (ln), but common logarithms (log base 10) or any logarithm base will work.
[tex]\[ \log(1.13^x) = \log(2.97) \][/tex]
3. Use the power rule of logarithms, which states that [tex]\(\log(a^b) = b \log(a)\)[/tex]:
[tex]\[ x \cdot \log(1.13) = \log(2.97) \][/tex]
4. Solve for [tex]\( x \)[/tex] by isolating it:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
So, the expression that Jackson can enter into his calculator to find [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{\log(2.97)}{\log(1.13)} \][/tex]
Using this logarithmic quotient on a calculator, Jackson will find that:
[tex]\[ x \approx 8.90675042995353 \][/tex]
Thus, the solution to the equation [tex]\( 1.13^x = 2.97 \)[/tex] is approximately [tex]\( x \approx 8.90675042995353 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.