Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Given that [tex]\sin x = \frac{3}{5}[/tex] and [tex]\cos y = \frac{7}{25}[/tex], with [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both being Quadrant I angles, find [tex]\cos (x+y)[/tex].

Sagot :

To solve for [tex]\(\cos(x + y)\)[/tex] given that [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both being angles in the first quadrant, we will follow these steps:

1. Find [tex]\(\cos x\)[/tex]:
Since [tex]\(x\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex],
[tex]\[ \sin^2 x = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \][/tex]
[tex]\[ \cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
[tex]\[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \][/tex]
Therefore, [tex]\(\cos x = \frac{4}{5}\)[/tex].

2. Find [tex]\(\sin y\)[/tex]:
Similarly, since [tex]\(y\)[/tex] is in the first quadrant, both sine and cosine are positive. Using the Pythagorean identity [tex]\(\cos^2 y + \sin^2 y = 1\)[/tex],
[tex]\[ \cos^2 y = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \][/tex]
[tex]\[ \sin^2 y = 1 - \cos^2 y = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625} \][/tex]
[tex]\[ \sin y = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Therefore, [tex]\(\sin y = \frac{24}{25}\)[/tex].

3. Calculate [tex]\(\cos(x + y)\)[/tex]:
Using the angle addition formula for cosine: [tex]\(\cos(x + y) = \cos x \cos y - \sin x \sin y\)[/tex],
[tex]\[ \cos(x + y) = \left(\frac{4}{5} \cdot \frac{7}{25}\right) - \left(\frac{3}{5} \cdot \frac{24}{25}\right) \][/tex]
[tex]\[ \cos(x + y) = \frac{28}{125} - \frac{72}{125} = \frac{28 - 72}{125} = \frac{-44}{125} = -0.352 \][/tex]

Therefore, the values we have are:
[tex]\[ \cos x = \frac{4}{5} = 0.8 \][/tex]
[tex]\[ \sin y = \frac{24}{25} = 0.96 \][/tex]
[tex]\[ \cos(x + y) = -0.352 \][/tex]

So, when given [tex]\(\sin x = \frac{3}{5}\)[/tex] and [tex]\(\cos y = \frac{7}{25}\)[/tex] with angles in the first quadrant, the value of [tex]\(\cos(x + y)\)[/tex] is [tex]\(-0.352\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.